Anexas Consultancy Services

Welcome to ANEXAS EUROPE

Part B Master Black Belt Training

Amitabh Saxena

Introductions and Expectations

Introduce yourself to the group:

- Name
- Job
- Any one thing not many people know about you!

Enabling individuals and organizations achieve excellence since 2006

- Anexas is a global network of lean six sigma and project professionals serving the wide spectrum of industries. We operate in 10 countries and have 25 professionals in the team.
- Our mission is to help organizations and individuals achieve excellence.
- Trained more than 300,000
 professionals in Lean and Six Sigma,
 Project Management and quality related
 trainings across the world from various
 industries.
- Lean Green Belts and Black Belts
 certified by Anexas have completed
 more than 5000 successful projects
 under our guidance.

Introductions and Expectations

Introduce yourself to the group:

- Name
- Job
- Any one thing not many people know about you!
- Expectations for the session

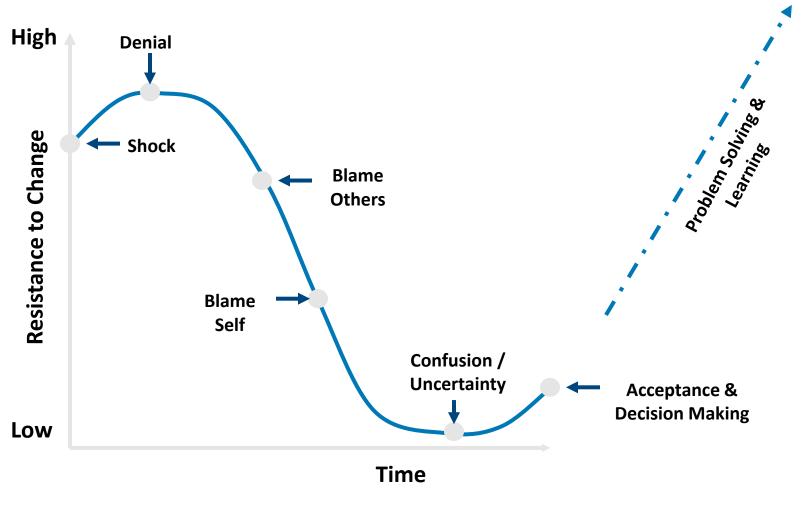
Anexas Consultancy Services

Chapter 1: Change Management

Change Management is Critical

- It is not the strongest of the species that survive, nor the most intelligent, but the ones most responsive to change.
 - Charles Darwin
- We cannot solve our problems with the same thinking we used when we created them."
 - Albert Einstein

Change Management


Change Management - Overview

D+V+F>R

Dissatisfaction + Vision + First Step > Resistance

Change Management – Change Curve

Stakeholders Analysis

Analyzing Stakeholders Position

Names	Strongly Against	Moderately Against	Neutral	Moderately Supportive	Strongly Supportive

Steps:

- 1. Plot where individuals currently are with regard to desired change (\Box = current)
- 2. Plot where individuals need to be (X = desired) in order to successfully accomplish desired change identify gaps between current and desired positions
- 3. Indicate how individuals are linked to each other, draw lines to indicate an influence link using an arrow (□) to indicate who influences whom
- 4. Plan action steps for closing gaps

Stakeholders Analysis

Analyzing Sources of Resistance

TPC matrix

Source of Resistance	Definition of causes of resistance	Examples from this change
Technical	 Habit and inertia Difficulty in learning new skills Lack of skills 	
Political	 Threats to old guard from new guard Relationships and networks Loss of power or authority Self-preservation 	
Cultural	 Selective perception Old "mindset" Strong values hampering change 	

Change Management Actions

Collecting Elements of Proof

3 Ds matrix

Variety Of Approaches	Elements of proof
Produce <u>Data</u> : Internal sources External networks 	
 Show <u>Demonstration</u>: Finding examples Best practices Visiting other organizations 	
Generate <u>Demand</u> : Leadership modeling High standards "Walk the talk" 	

Change Management is Critical

- Change Management is Critical
 - Question is not whether change is needed but rather how much and how often
 - Healthcare is a complicated system that demands change quickly to aim at being a high reliability organization
 - High reliability is desired in healthcare. When caring for patients, we must take aim at reducing harm in an extremely complex environment
- Critical factors to assess change
 - Limits of human performance
 - System's actual capacity to handle change

Scope of change

- Scope of change
 - Change is moving from an existing state through a transition state to a future state
 - Change is inevitable and essential for growth
- Different models and strategies are required, depending on:
 - Type of change
 - People involved
 - Scope of change

Change Management Process

- Change Management Process
 - Existing State
 - Transition
 - Future State

Change Management Process

Significant Change

- Significant change, may cause distress and disruption (Pandemic requiring full PPE, causing high census and increased ICU cases). Transition
- Second order: Complex change
 - Complex, requires significant change in behavior (new computer system or new clinical guidelines).
- First order: small change
 - Small, requires minimal effort (new form, obtaining same product from a different vendor).


Change Management (continued)

- An organization's ability to handle frequent change is dependent upon individuals and leaders
- Successful transformation requires Transformational Leadership.
- Role of leaders is to establish the culture of change, and model behaviors needed to adapt to change
- Sense of loss must be acknowledged in the early stage of change to help people transition
- The engagement of an interdisciplinary team of staff and stakeholders is key so that change seen positively is valued

Change Management (continued)

- Resilience is the process of adapting well in the face of adversity or significant stress
- Flexibility of individuals is a critical element in an organization's ability to:
 - Make changes quickly
 - Rebound from one change to another
- Individuals can build the skill of resilience

Change Management (continued)

- Change is not a linear process
 - Individuals will be at different stages of accepting and implementing change
- The quality professional's role is as change agent, improvement advisor, and facilitator
 - It is critical to continuously assess where staff is in their acceptance of the change

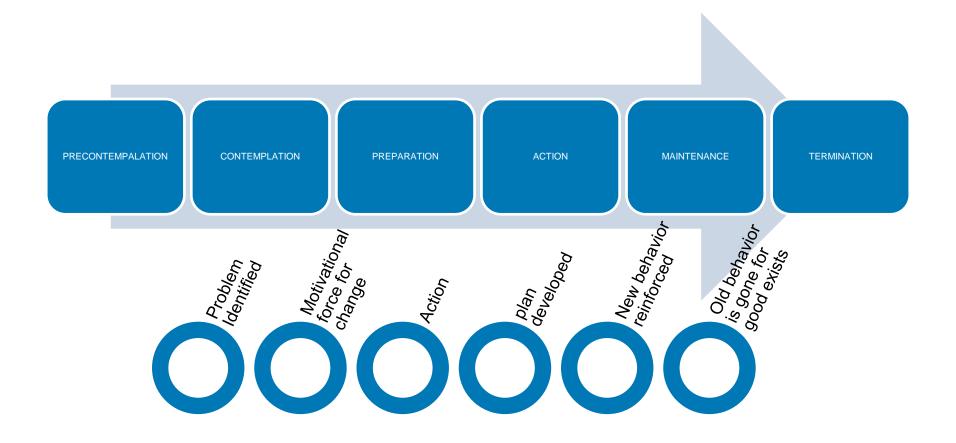
Assessing Change Readiness

- In this activity, you'll be tasked with assessing organizational readiness for change. There are 7 categories and choose which of the options best indicates maximum readiness for change.
- Category
 - 1. LEADING CHANGE
 - 2. CREATING SHARED NEED
 - 3. SHAPING A VISION
 - 4. MOBILIZATION COMMITMENT
 - 5. MONITORING PROGRESS
 - 6. FINISHING THE JOB
 - 7. ANCHORING THE CHANGE

- Leadership
 - Active, visible, supportive of change
 - Makes focus or goal of change clear
 - Strong communicator of change
 - Accountable for change (owns, doesn't delegate)
 - Involves all leaders and expects results
 - Manages perceptions and expectations

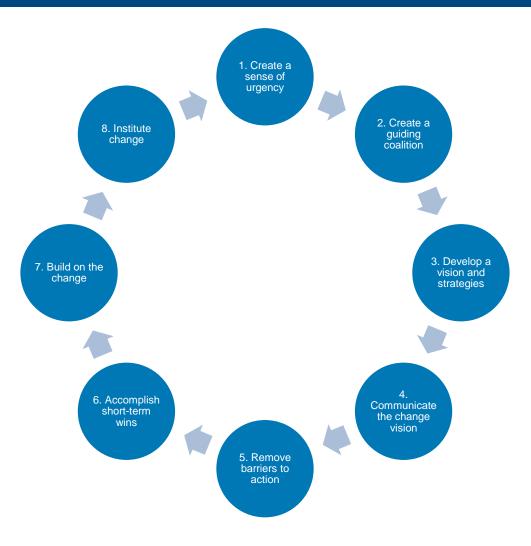
- Structure
 - Develops strong team infrastructure
 - Team members are interdependent with respect to information, resources and skills
 - Empowers team members
 - Encouraged to use their knowledge, expertise and creativity as they work toward a successful change
 - Makes resources available
 - Includes the human, financial, technological resources, as well as others as needed

- Culture
 - Assesses readiness for change
 - Supports creativity, innovation, and risk-taking
 - Accepts failures, successes, and encourages ideas
 - Supports participative structure (including staff levels)
 - Focuses/values group learning and improvement
 - Encourages diversity
 - Focuses on systems/processes
 - Rewards individuals and teams



Techniques

- Make tools available for teams
- Use available tools and technology
- Apply change models and concepts
- Replace old ways with new customs/norms
- Use training to reinforce the change
- Put procedures in place to reinforce the change
- Link promotion and pay to desired behaviors
- Simplify, standardizes, and uses technology



Prochaska's Stages in Changing Behavior

Kotter's Eight-stage Process for Major Change

Kotter's Heart of Change Model

. Pitfalls in implementing Kotter's model

- Allowing too much complacency
- Failing to create a sufficiently powerful guiding coalition
- Underestimating the power of vision
- Under communicating the vision
- Permitting obstacles to block the new vision
- Failing to create short-term wins
- Declaring victory too soon
- Neglecting to anchor changes firmly in the corporate culture

Change Management Models

Common elements of change management models include:

- A description of movement from a current state to a future state
- The impetus for transition
 - This may be dissatisfaction with current state, a need to reduce cost or increase revenue, a re-allocation of resources, changes in regulations, or other outside influences
- Factors to identify readiness for change
- Communication strategies for change
- Leadership characteristics for change
- The approach to planning for change
- Characteristics of the change and factors of how this makes it more or less likely to be accepted

Force Field Analysis Change Model

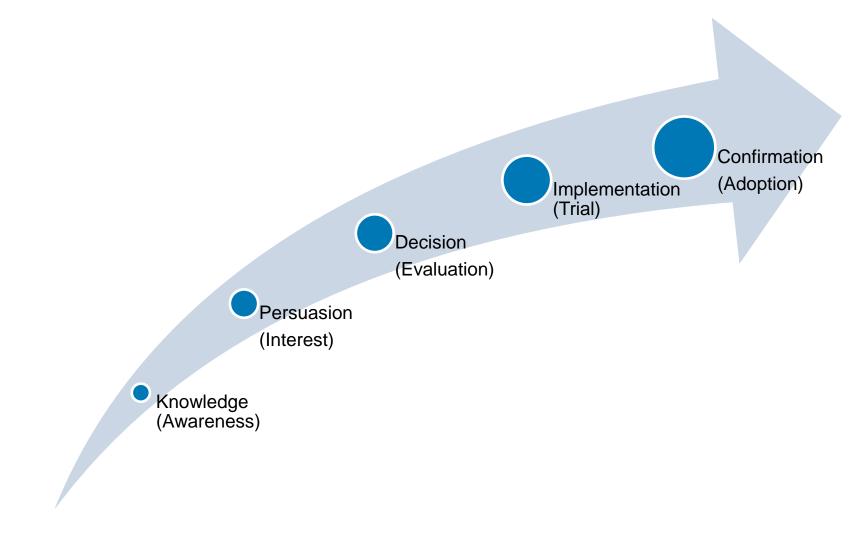
DRIVING FORCES

RESTRAINING FORCES

Example: Proposed change is to allow families 24-hour visiting access for patients in the intensive care unit.

- Families provide comfort and reassurance to patients during ICU stays. Long periods without family may increase stress.
- Patients have a right to have family present during illnesses.
- Families have variable work schedules and cannot always meet the hospital's schedule.

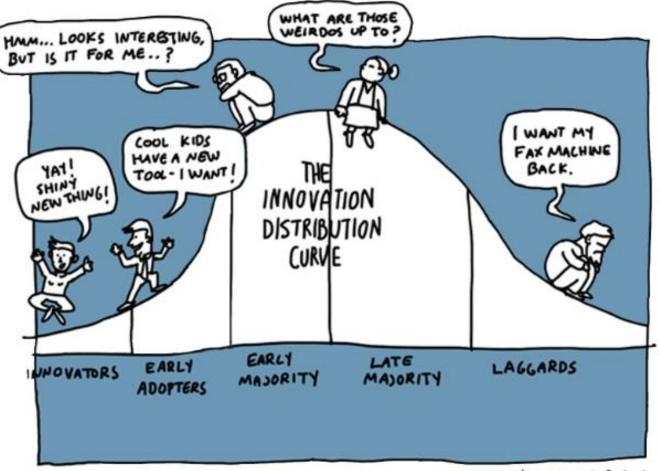
- Chief medical officer finds the open visiting policy disruptive to patient care.
- Nursing staff finds the open visiting policy disruptive to nursing routines and getting their work done.
- The open visiting hours will tire patients and not all sufficient rest.
- More families will stay overnight and crowd waiting rooms, sleeping on chairs, and couches.
- More families present in the hospital throughout the night increases security risks for the hospital.


Force Field Analysis Change Model

CQI education program

STRENGTHS	BARRIERS
Management supports program	Lack of time
Physicians support program	Lack of commitment of all participants
Have committed time and other resources to complete program	Viewed as not important

Diffusion of Innovation Model



Diffusion of Innovation Model

- Knowledge (Awareness)
 - Socioeconomic characteristics, personality variables, communication behavior.
- Persuasion(Interest)
 - Attending to perceived characteristics of innovation such as relative advantage, compatibility, complexity, visibility, and uncertainty.
- Decision(Evaluation)
 - Adoption or rejection.
- Implementation (Trial)
 - Direct application, reinvention.
- Confirmation(Adoption)
 - Evaluation of effectiveness.

Change Adoption

BUSINESSILLUSTRATOR.COM

Reducing Resistance

SITUATION	STRATEGIES
Fear of Change	Clearly identify effect of change effort and communicate openly with those involved
Not willing to make the change (who)	Set goals, measure performance, provide coaching and feedback, reward and recognize positive efforts
Not able to perform the change (how)	Provide education and training in new skills and use various management techniques
Lack of necessary knowledge to make the change (why)	 Communicate what, why, how, when, and who of change process; present positive outlook Have clear focus and goal for change for expectations Be adaptable Use structured approach to manage ambiguity and confusion Plan and coordinate change Use proactive rather than reactive approach

Outcomes of Successful Change

- Check your items off the checklist.
- Think of what factors are or are not present in your organization
 - Leadership systems are designed for results
 - Strategy is simple, aligned, and deployed
 - Design of organizational culture is intentional
 - Mission and vision are clearly understood
 - Rapid response is employed
 - Desired results are defined, measured, and aligned
 - Decisions are based on sound data
 - Customer focus is the foundation
 - Measurement is deployed at all levels
 - Organizational learning is valued
 - Human resource practices support culture
 - Employees are involved
 - Innovation is valued
 - Partnerships are created
 - Improvements are integrated into daily work
 - Focus is on improving employee knowledge

Anexas Consultancy Services

Chapter 2: Multiple Regression

Patient Discharge Time – Recap

Find out if patient discharge summary delay impacting the discharge time. The data is given in Anexas hospital case study file.

Discharge summary delay	Discharge Time
100	300
45	245
160	360
85	280
95	300
130	330
120	320
110	310
95	300
100	302
90	287
100	294
110	310
125	320
105	300

What would you do? What questions might you ask?

Data in *Anexas Hospital study* .mtw

- Practical Problem
- Is there a relationship between discharge summary delay and discharge time?
- If there a relationship, how strong is that relationship?
- Statistical Problem
- Are the variables correlated?
- Null hypothesis: Discharge Summary delay and Discharge time are not correlated
- Alternate hypothesis: Discharge Summary delay and Discharge time are correlated

State the Hypotheses and Significance Level

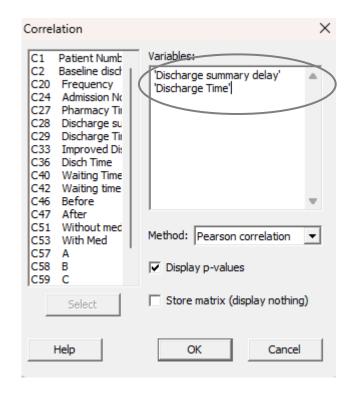
- $H_0: \rho = 0$
- $H_a: \rho \neq 0$
- $\alpha = 0.05$

Notice that the hypotheses are about a population parameter

What Hypothesis Test is Appropriate?

These hypotheses deal with correlation coefficient

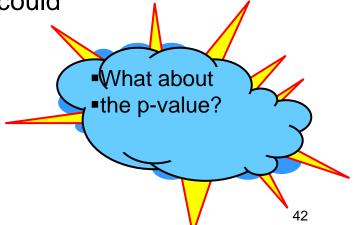
Make decisions based on Pearson correlation coefficient and 'p-value'



Tool Bar Menu > \underline{S} tat > \underline{B} asic Statistics > \underline{C} orrelation

<u>C</u> alc <u>S</u> ta	at <u>G</u> rap	h E <u>d</u> itor <u>T</u> ools	Wi	ndow <u>H</u> elp	Assista <u>n</u> t	_	
) 🛍 🗌	<u>B</u> asic S	itatistics 🔹 🕨	$\equiv_{\mathbf{x}}$	<u>D</u> isplay Descrip	otive Statistics		🔒 🖌 🏒
-	<u>R</u> egres	sion 🕨	<u>. x</u>	<u>S</u> tore Descripti	ve Statistics	-	
_	<u>A</u> NOV/	۰ ۲	a :	<u>G</u> raphical Sum	mary		
	DOE	+	μ ^z	1-Sample Z		-	
	<u>C</u> ontro	ol Charts 🕨 🕨	μ	<u>1</u> -Sample t			C
vs p	Oublity Teols		μ	<u>2</u> -Sample t			
		lity/Survival 🕨 🕨	μ.μ	Paired t		ty	Pharma
	Multiv		P	1 Proportion			
	Time <u>S</u> eries		2 Proportions				
San 0.4	Tables	•	λ	1-Sample Pois			
0.4		nparametrics		2-Sample Poisson Rate			
		lence Tests	λ				
On	<u>P</u> ower 4	and Sample Size	σ^2	1 Varianc <u>e</u>			
vs p	-	concer	a/a1	2 V <u>a</u> riances			
	5	Correct	(1:1)	Correlation			
	6	Incorrect	(σ²)	Co <u>v</u> ariance	Correlation		
			A Normalit	<u>N</u> ormality Te	Measure the strength and	d direc	tion of
Samp 0.46	7	Incorrect	• •	O <u>u</u> tlier Test	the linear relationship be variables.	tween	two
	8	Incorrect	ït	Goodness-of-	t lest for Poisson		
	9	Incorrect			А		
		- ·			••		
	10	Correct			N		

Tool Bar Menu > \underline{S} tat > \underline{B} asic Statistics > \underline{C} orrelation



Correlation: Discharge summary delay, Discharge Time

```
Pearson correlation of Discharge summary delay and Discharge Time = 0.991 P-Value = 0.000
```

- What is the Decision?
- Pearson correlation or correlation coefficient for the sample, r = 0.991
- Does that mean ' ρ ' is greater than zero? Or could it be that r = 0.991 due to chance variation while ' ρ ' is still zero?
- Answer this question using p value

- What is the statistical interpretation?
- p-value (0.000) < α -risk (0.01): reject the null hypothesis
- Infer H_a: sufficient evidence that there is a correlation between discharge summary delay and discharge time

Anexas Consultancy Services

Regression

Correlation and Regression

- Correlation tells how much linear association exists between two variables
- The Regression process creates a line that best resembles the relationship between process input and output and also provides an equation describing the nature of relationship.

Different types of Mathematical Models

 The regression process can fit several different types of line, since the linear relationship won't be applicable to all situations. The alternatives are

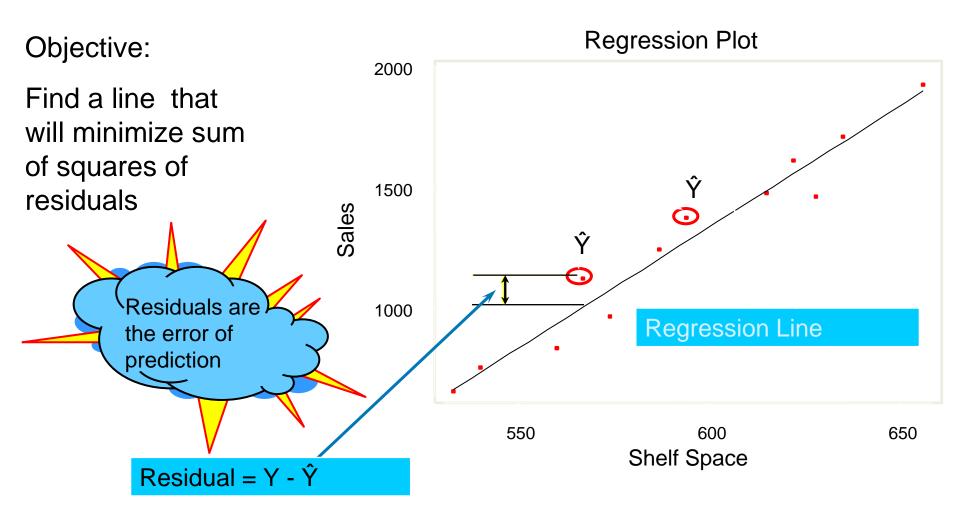
Correlation and Regression

- Correlation tells how much linear association exists between two variables
- Regression provides an equation describing the nature of relationship

Regression Terminology

- Response Variable
 - This is the uncontrolled variable also known as dependent variable, output variable or Y variable
- Regressor Variable
 - Response depends on these variables also known as independent variables, input variables, or X variables
- Noise Variable
 - Input variables (X) that are not controlled in the experiment
- Regression Equation
 - Equation that describes the relationship between independent variables and dependent variable
- Residuals
 - Difference between predicted response values and observed response values

Regression Objectives


- Determination of a Model
 - Explore the existence of relationship
- Prediction
 - Describe the nature of relationship using an equation and use the equation for prediction
- Estimation
 - To assess the accuracy of prediction achieved by the regression equation
- Determination of KPIV (x factor)
 - Screen variables and determine which variable has the biggest impact on the response variable

Anexas Consultancy Services

Simple Linear Regression

Method of Least Squares

A Black Belt is interested in predicting the discharge time generated from information on patient discharge summary delay. As a result she conducted a study and collected data from 15 patients. Find out if patient discharge summary delay is impacting the discharge time. The data is given in Anexas hospital case study file

Discharge summary delay 100	Discharge Time 300
45	245
160	360
85	280
95	300
130	330
120	320
110	310
95	300
100	302
90	287
100	294
110	310
125	320
105	300

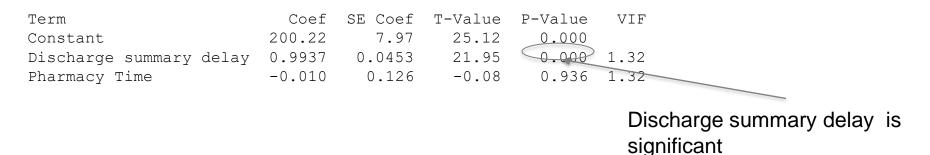
How will we create a simple linear regression model for the two variables?

Data in <u>Anexas Hospital study</u> <u>.mtw</u>

Tool Bar Menu > Stat > Regression > Fit Regression Model

Minitab - ANEXAS HOSPITAL CASE STUDY OF PATIENT DISCHARGE TIME - NOT SOLVED.MPJ												
<u>File Edit Data Calc Stat Graph Editor Tools Window H</u> elp Assista <u>n</u> t												
🗃 🗄 I 🖨 I 🔏 🗅 🛍 🔄	<u>B</u> asic Stat	tistics 🔹 🕨	6.	0 🕜 🖂	f*	:	-		1 1. 2			
	<u>R</u> egressio	on 🕨	1	<u>F</u> itted Line Plo	t		T		L . LAML	_		
	<u>A</u> NOVA	+		<u>R</u> egression		Þ	\mathbb{Z}	<u>F</u> it Regre	ssion Model			
Session	DOE	•	1	Nonlin <u>e</u> ar Reg	ression		6 -	<u>B</u> est Sub	Fit Regression M	odel		
Test of p = 0.7 vs p	Control C	Charts 🕨 🕨		Stability Study	,	Þ	fω,	Predict	Model the relation	nship l	between	
	<u>Q</u> uality T	ools 🕨 🕨						F <u>a</u> ctorial	categorical or cor			
Event = On Time	Re <u>l</u> iability	y/Survival 🔹 🕨	X	Or <u>t</u> hogonal Re	egression			Contour	and one response			D
	<u>M</u> ultivari	ate 🕨 🕨	₹∎	Partial Least S	quares			S <u>u</u> rface l	transform the res			
Variable X N Sam	Time <u>S</u> eri	ies 🕨 🕨	5	Binary Fitted L	ine Plot	_		_	Contour Plot	50		
Delay 7 15 0.4	<u>T</u> ables	•	<u> </u>	Binary Logistic		•	-	-	e <u>O</u> ptimizer	40		
	<u>N</u> onpara	metrics 🔹 🕨	123		ic Regression		~		- <u>-</u> p	40		
Correlation: Disch	<u>E</u> quivaler	nce Tests 🔹 🕨	abo		stic Regression					20		
	-	nd Sample Size 🕨	abc		-					20		
Pearson correlation o P-Value = 0.865	4 (Correct		Po <u>i</u> sson Regre	ssion	•				30		
1 Varac - 0.000	5 (Correct			А					34		
Correlation: Discha	6 I	Incorrect			N					20		
Pearson correlation o					٨					40		

Regressio	on		×
C2 Ba C20 F	atient Number aseline discharge requency	R <u>e</u> sponses: ['] Discharge Time'	
C27 P C28 D	dmission No harmacy Time iischarge summai iischarge Time	<u>C</u> ontinuous predictors:	Ŧ
C33 Improved Dischar C36 Disch Time C40 Waiting Time A C42 Waiting time B		'Discharge summary delay' 'Pharmacy Time'	A
C47 A C51 V C53 V C57 A		C <u>a</u> tegorical predictors:	
C58 B C59 C C60 D C61 E			v
		Model Options Coding	<u>S</u> tepwise
	Select	<u>G</u> raphs <u>R</u> esults	Storage
Help	p	<u>K</u>	Cancel



Session Output from Minitab

Model Summary

S R-sq R-sq(adj) R-sq(pred) 3.69837 98.16% 97.85% 97.43%

Coefficients

Regression Equation

Discharge Time = 200.22 + 0.9937 Discharge summary delay - 0.010 Pharmacy Time

What About R-squared?

- R-squared is a measure describing the quality of regression
- Measures the proportion of variation that is explained by the regression model

•
$$R^{2} = SS_{regression} / SS_{total} = (SS_{total} - SS_{error}) / SS_{total} = 1 - [SS_{error} / SS_{total}]$$

Source	DF	SS	MS	F	Р		
Regression	1	1709656	1709656	224.511	0.000		
Error	10	76150	7615				
Total	11	1785806					
R ² = 1709656 / 1785806 = 95.74%							

In this example, 95.7% of variation in Y can be explained by variation in X

Example: Patient Discharge Time

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
3.55428	98.16%	98.01%	97.78%

Coefficients

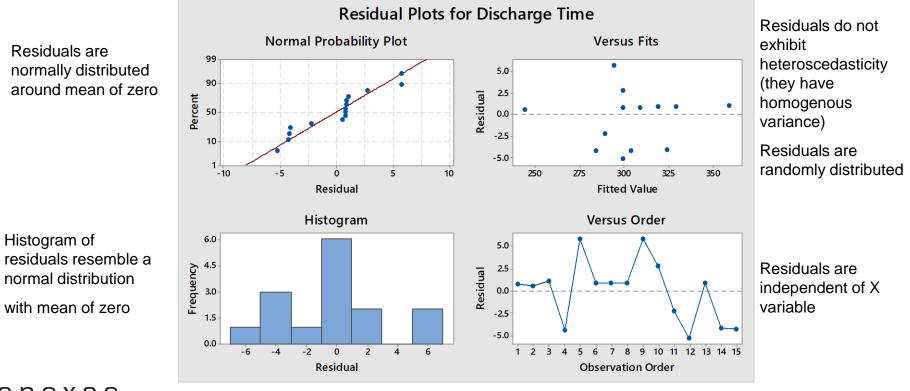
Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	199.66	4.07	49.11	0.000	
Discharge summary delay	0.9956	0.0378	26.31	0.000	1.00

Regression Equation

Discharge Time = 199.66 + 0.9956 Discharge summary delay

Assumptions for Regression

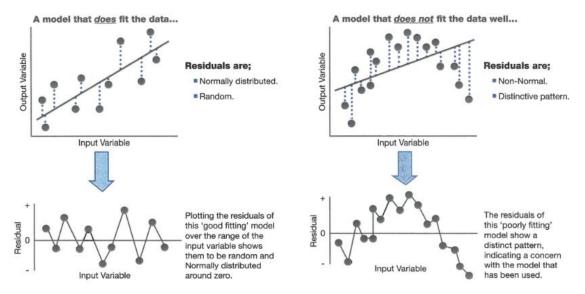
Tool Bar Menu > Stat > Regression > Regression


- To use the results of regression, assumptions about residuals must be satisfied
- What are the assumptions about residuals?
 - Residuals are normally distributed with mean of zero
 - Residuals show no pattern (random)
 - Residuals have constant variance (homogeneous variance or no heteroscedasticity)
 - Residuals are independent of the values of regressor (x) variables
 - Residuals are independent of each other

Assumptions for Regression

Residuals are error in the fit of regression line

Difference between the observed value of response variable and fitted value


Fit Regression Model Graphs - Four-in-One Residual Plot

- The four-in-one residual plot displays four different residual plots together in one graph window. This layout can be useful for comparing the plots to determine whether your model meets the assumptions of the analysis. The residual plots in the graph include:
- Histogram indicates whether the data are skewed or outliers exist in the data
- Normal probability plot indicates whether the data are normally distributed, other variables are influencing the response, or outliers exist in the data
- Residuals versus fitted values indicates whether the variance is constant, a nonlinear relationship exists, or outliers exist in the data
- Residuals versus order of the data indicates whether there are systematic effects in the data due to time or data collection order

Checking the Model – Analysis of Residuals

 Confirming that your regression model is a reasonable fit can be done visually with simple, regression, because you are able to see the fitted line plot. However this is not possible wit Multiple regression since it is more than two dimensional. Instead, the residual errors between the model and the data points can be analysed in order to decide if the model is a good for the data. This possible because the behavior of residuals for a gods fitting is well established as described below.

Module Objectives

By the end of this module participant will be able to:

- Determine, for a given response variable, the key process input variables from a set of multiple input variables
- Perform multiple linear regression for a given set of response variable using several input variables
- Perform model diagnostics and validate assumptions
- Use regression model to predict the value of a response variable for given values of predictor variables

Why Learn Multiple Regression?

- Explore the existence of relationship between a dependent variable and several independent variables
- Screen multiple input variables and determine which variables have the biggest impact on the response variable
- Describe the nature of relationship with an equation and use it for prediction

What is Multiple Regression?

- Procedure of establishing relationship between a continuous type response variable and two or more independent variables
- Multiple regression equation can be used to predict a response based on values of predictor variables
- Multiple regression equation takes the form

$$Y = f(x_1, x_2, x_3,)$$

Types of Multiple Regression

Multiple Linear Regression

Multiple regressor (x) variables such as x_1 , x_2 , x_3 and model linear with respect to coefficients

Example1: $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + error$

Example2: $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_2^2 + error$

Multiple Non-Linear Regression

Multiple regressor (x) variables such as x_1 , x_2 , x_3 and model non-linear with respect to coefficients

Example: $y = (a_0 + a_1 x_1) / a_2 x_2 + a_3 x_3 + error$

This module focuses on multiple linear regression applying general least squares method

Multicollinearity

- A condition in which two or more independent variables (x variables) are correlated (pairwise and more complex linear relationships)
- When used in multiple regression model, they contribute to redundant information
- For example, fuel economy of a truck = f (truck load, engine horse power)
- But truck load may be correlated with engine horse power
- Truck load and horse power provide some overlapping information leading to potential problems

Problems Due to Multicollinearity

- Multicollinearity can cause severe problems
 - calculations of coefficients and standard errors are affected (unstable, inflated variances)
 - difficulty in assessing any particular variable's effect
 - opposite signs (from what is expected) in the estimated parameters
 - if two input variables x₁ and x₂ are highly correlated, then p-value for both might be high

Detecting Multicollinearity

- High values of pairwise correlation (generally > 0.8) provide warnings of potential multicollinearity problems
- If the above two variables are strongly correlated, one of them should be removed from regression model

Variance Inflation Factor

 A metric, called variance inflation factor (VIF) calculates the degree of <u>multicollinearity</u>

$$VIF = \frac{1}{1 - R_i^2}$$

- R_i² is the R² value obtained when X_i is regressed against other X
- A large VIF implies that at least one variable is redundant
- VIF > 10: high degree of multicollinearity cause for serious concern (R_i² > .9)
- VIF > 5: moderate degree of multicollinearity ($0.8 < R_i^2 < 0.9$)
- Guideline: Ensure that VIF < 5 when possible

Calculating VIF

Minitab displays VIF values in the session window through *Stat* > *Regression* > *Regression* > *Fit Regression Model* menu

Regre	ession	×	Regression Analysis: Monthly Hrs versus Teller, Accounts, Population, Urban
C1 C2 C3	Teller Accounts Population	Responses:	Analysis of Variance
C5 C6 C7	Urban City Monthly Hrs	· ·	Source DF Adj SS Adj MS F-Value P-Value Regression 4 34308448 8577112 5345.10 0.000 Teller 1 2719647 2719647 1694.83 0.000
	monany mo	Continuous predictors: Teller Accounts Population Urban	Accounts 1 41 41 0.03 0.876 Population 1 8948965 8948965 5576.83 0.000 Urban 1 123813 123813 77.16 0.000
		~	Urban 1 123813 123813 77.16 0.000 Error 12 19256 1605 Total 16 34327704
		Categorical predictors:	Model Summary S R-sq R-sq(adj) R-sq(pred)
			40.0583 99.94% 99.93% 99.90%
		×	Coefficients
		Model Optio <u>n</u> s Co <u>d</u> ing <u>S</u> tepwise	Term Coef SE Coef T-Value P-Value VIF Constant 1094 148 7.41 0.000 0 Teller 0.9510 0.0231 41.17 0.000 10.59
	Select	<u>G</u> raphs <u>R</u> esults S <u>t</u> orage	Accounts 0.0091 0.0571 0.16 0.8 6 8.31 Population 0.056381 0.000755 74.68 0.000 1.04 Urban 238.5 27.2 8.78 0.000 1.95
	Help	<u>O</u> K Cancel	

Predictor Variable Selection

- What combination of predictor variables is best for the regression model?
- Three options in Minitab:
 - Stepwise: procedure to add and remove variables to the regression model to produce a useful subset of predictors
 - Best Subsets: procedure to give best fitting regression model that can be constructed with one variable, two variable, three variable, etc. models
 - Regression: once the best model is selected, use Regression to get more detailed diagnostics

Best Subsets

Tool Bar Menu > Stat > Regression > Regression > Best Subsets

Best Subse	ts Regressio	on	×
C3 Popu C5 Urba C6 City	ounts ulation	Response: Monthly Hrs' Free predictors: Teller Population Urban	< >
		Predictors in all models:	_
			^
Se	lect	1	
Help		Options OK Cancel	

Use 'Best Subsets' technique to select a group of likely models for further analysis.

Best Subsets Statistics

- Select the smallest subset that fulfills certain statistical criteria
- Minitab displays R², R² (adjusted), C-p, and s statistics
 - R² (large R² is desired; use to compare models with the same number of terms)
 - adjusted R² (large is desired; use to compare models with different number of terms)
 - s (standard deviation of error terms; small is desired)
 - Mallows' C-p statistic (small is desired; Guideline: want C-p ≤ number of terms in model)

Putting It All Together

Multiple regression objective: Establish a model with high prediction ability and minimum multicollinearity

Multiple regression steps:

1. Remove variables contributing to multicollinearity from the predictors

2. Use remaining variables and apply Best Subsets to evaluate best predictor candidates for the model

- 3. Choose the best candidate and complete regression analysis
- 4. Perform model diagnostics to identify outliers and unusual observations
- 5. Analyze residuals for violation of assumptions
- 6. Assess predictive capability using new observations

Example: Monthly Labor Hours

A hospital wants to produce an empirical equation that will estimate personnel needs in its branches. The following data was collected from its existing branches at various locations. The response variable (Y) for the study was monthly labor hours. The input variables were average number of average revenue (x1), average count of total patients enrolled(x2), location of branch (x3), population within 10 Km radius (x4). The data is recorded in the file *Multiple Regression.mtw.*

- Establish a multiple regression model to predict monthly labor hours using the predictor variables
- Perform model diagnostics to detect any outliers or unusual observations
- Validate any assumptions used for creating the model

Example: Monthly Labor Hours

- Output variable: Monthly Hrs
- Input variables: Revenue, Patientss, Population, Location
- Practical questions about the data and process?

C1	C2	C3	C4-T	C5	
Average Revenue	Patients	Population	Location	Monthly Hrs	
2842.8	2967	58800	Urban	7381.8	
2549.2	3243	65200	Urban	7465.0	
2718.4	3519	70900	Urban	7925.3	
3683.2	3818	77400	Urban	9265.2	
5916.8	4439	79300	City	11282.6	
5825.6	4347	81000	City	11156.2	
4785.6	4025	71900	City	9714.0	
5410.4	4278	63900	Urban	10123.0	
5062.4	4370	54500	Urban	9269.0	
5647.6	4301	39500	City	8746.2	
6676.4	4485	44500	City	9963.6	
5828.4	4738	43600	Urban	9346.3	
5447.6	4554	56000	Urban	9734.0	
5830.0	4416	64700	City	10390.2	
5822.4	4393	73000	City	10773.6	
7429.2	4600	78900	City	12673.2	
6247.2	4600	79400	Urban	11776.1	

Dealing with indicator variables (dummy variables)

- To use independent variables which are categorical (e.g, location, gender) in regression, first create "indicator" variables (dummy variables)
- Indicators are simply 1's and 0's which are used like binary code.
- Each level of a categorical variable is assigned a column.
- If a row of data is associated with that level of the variable, the value in that column for that row of data will be 1. If not associated with that level, the value will be 0.

- 1. Create an indicator variable for "Location"
 - Toolbar>Calc> Make indicator Variables

	Make Indicato	r Variables	×
C1 Teller C2 Accounts C3 Population C4 Location C5 Monthly Hrs	Indicator variables for:	cation	
	Distinct Value	Column	
	City	Location_City'	
	Urban	'Location_Urban'	
Select			
Help		<u>O</u> K Cance	1

- Result should follow the pattern below
- <u>Order</u> in which the columns are named is important. For alphanumeric data, the columns are created in the order specified as the value order (alphabetic, order of appearance, user defined).

	Location	Urban	City	M
2	Urban	1	0	
0	Urban	1	0	
0	Urban	1	0	
D	Urban	1	0	
D	City	0	1	
0	City	0	1	
0	City	0	1	
D	Urban	1	0	
D	Urban	1	0	
D	City	0	1	
D	City	0	1	
D	Urban	1	0	

Create an indicator variable for "Location"

- When categorical variables are used in the regression model, one column of indicator values is NEVER included.
- In the example, use either "Urban" or "City" since it would be redundant to use both. (If "Urban"=0, then the observation must be "City")

- Multiple regression steps:
- Remove variables contributing to multicollinearity from the predictors
- Identify if multicollinearity is a problem by using variance inflation factors (VIF) measurements
- 1. Stat> Regression> Regression> Fit Regression Model
- 2. Fill in the dialog as shown below:

Serious multicollinearity problem! Want VIF <5

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	1094	148	7.41	0.000	
Average Revenue	0.9510	0.0231	41.17	0.000	10.59
Patients	0.0091	0.0571	0.16	0.876	8.31
Population	0.056381	0.000755	74.68	0.000	1.04
Urban	238.5	27.2	8.78	0.000	1.95

Regression Equation

Monthly Hrs = 1094 + 0.9510 Average Revenue + 0.0091 Patients + 0.056381 Population + 238.5 Urban

- b. Identify pairwise correlations between x variables
- 1. Stat> Basic Statistics> Correlation..
- 2. Fill in the dialog as shown below:
- 3: Press Ok

Correlation: Average Revenue, Patients, Population, Urban

	Average Revenue	Patients	Population
Patients	0.918		
Population	-0.024	-0.082	
Urban	-0.573	-0.372	-0.126

Next step: remove Revenue and check multicollinearity

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	-2789	1303	-2.14	0.052	
Patients	2.184	0.247	8.85	0.000	1.18
Population	0.05735	0.00865	6.63	0.000	1.04
Urban	-456	244	-1.87	0.084	1.20

Regression Equation

Monthly Hrs = -2789 + 2.184 Patients + 0.05735 Population - 456 Urban

All VIF <5

• Multiple regression steps:

2. Use remaining variables and apply Best Subsets to evaluate best predictor candidates for the model

1. Stat> Regression> Best Subsets..

2. Fill in the dialog as shown below:

3: Press Ok

Best Subsets Regression: Monthly Hrs versus Patients, Population, Urban

Response is Monthly Hrs

						Р
						0
						Рр
						a u
						t l
						i a U
						etr
						n i b
		R-Sq	R-Sq	Mallows		toa
Vars	R-Sq	(adj)	(pred)	Ср	S	s n n
1	59.4	56.7	49.6	53.2	964.18	Х
1	25.7	20.8	4.9	108.0	1303.6	Х
2	89.9	88.4	81.6	5.5	498.22	ХХ
2	65.0	60.0	49.0	46.0	926.06	Х Х
3	92.0	90.2	84.0	4.0	459.00	ХХХ


```
Regression Equation
```

```
Monthly Hrs = -2789 + 2.184 Patients + 0.05735 Population - 456 Urban
```


Anexas Consultancy Services

Chapter 3: Design of Experiments

Module Objectives

By the end of this module, the participant will:

- Understand the strategy behind Design of Experiments (DOE)
- Create a design matrix
- Code factors
- Understand the limitations of OFAT experiments
- Interpret interactions

Why Learn About Design of Experiments?

- Properly designed experiments will improve
- Efficiency in gathering information
 - Planning
 - Resources
- Predictive knowledge of the process
- Ability to optimize process
 - Response
 - Control input costs
- Capability of meeting customer CTQs

What is Design of Experiments ?

- A DOE is a planned set of tests on the response variable(s) (KPOVs) with one or more inputs (factors) (PIVs) each at two or more settings (levels) which will:
- Determine if any factor is significant
- Define prediction equations
- Allow efficient optimization
- Direct activity to rapid process improvements
- Create significant events for analysis

DOE Terminology

- Response (Y, KPOV): the process output linked to the customer CTQ
- Factor (X, PIV): uncontrolled or controlled variable whose influence is being studied
- Level: setting of a factor (+, -, 1, -1, hi, lo, alpha, numeric)
- Treatment Combination (run): setting of all factors to obtain a response
- Replicate: number of times a treatment combination is run (usually randomized)
- Repeat: non-randomized replicate
- Inference Space: operating range of factors under study

DOE Objectives

- Learning the most from as few runs as possible; efficiency is the objective of DOE
- Identifying which factors affect mean, variation, both or none
- Screening a large number of factors down to the vital few
- Modeling the process with a prediction equation:
 Y = f (A,B,C ...)
- Optimizing the factor levels for desired response
- Validating the results through confirmation

Anexas Consultancy Services

DOE Strategy

Strategy of Experimentation

Planning Phase

- Define the problem
- Set the objective
- Select the response(s), Ys
- Select the factors(s), Xs
- Select the factor levels
- Select the DOE design
- Determine sample size
- Run the experiment

Execution Phase

- Collect data
- Analyze data
- Validate results
- Evaluate conclusions
- Revise SOPs
- Train affected workforce
- Document results
- Consider next experiment

Anexas Consultancy Services

Planning Phase

The purpose of an experiment is to better understand the real world, not to understand the experimental data...

William Diamond Statistician, IBM

Define the Problem Step 1

- The problem statement should:
- Be complete and detailed
- Contain no conclusions
- Contain no solutions
- Contain no causes
- Be specific

Well begun is half done...

Mary Poppins

Issues With Problem Definition

- Common problem definition issues
- Response not well defined
- Response not quantifiable
- Response does not link to CTQs
- Specifications not customer focused
- Quantification not based upon data
- Stated as a predetermined solution

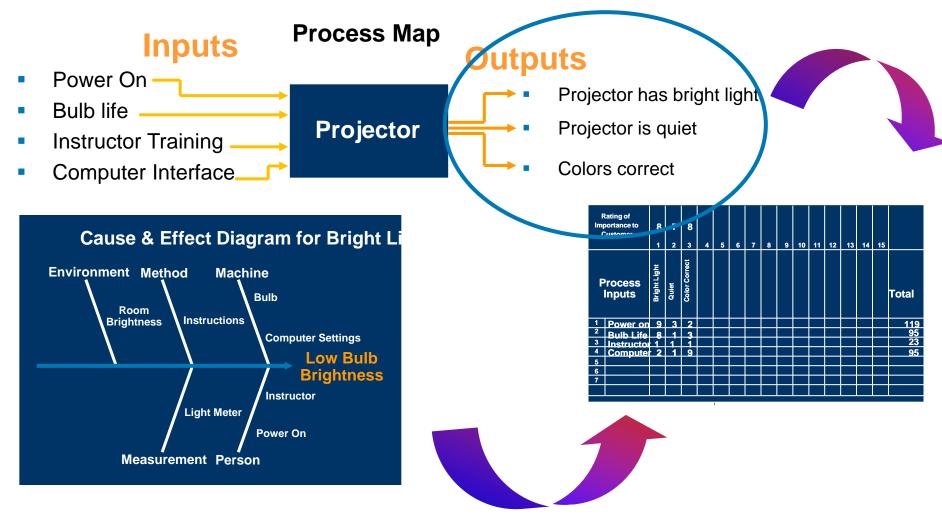
Guide your team to unambiguous, executable experiments

Set the Objectives Step 2

- The upfront objectives should
- Define what you want to learn from the experiment
- Support screening, modeling or both
- Look at main effects, interactions or both
- Set boundaries for optimization
- Know resource requirements

Do not use all of your resources on the first experiment

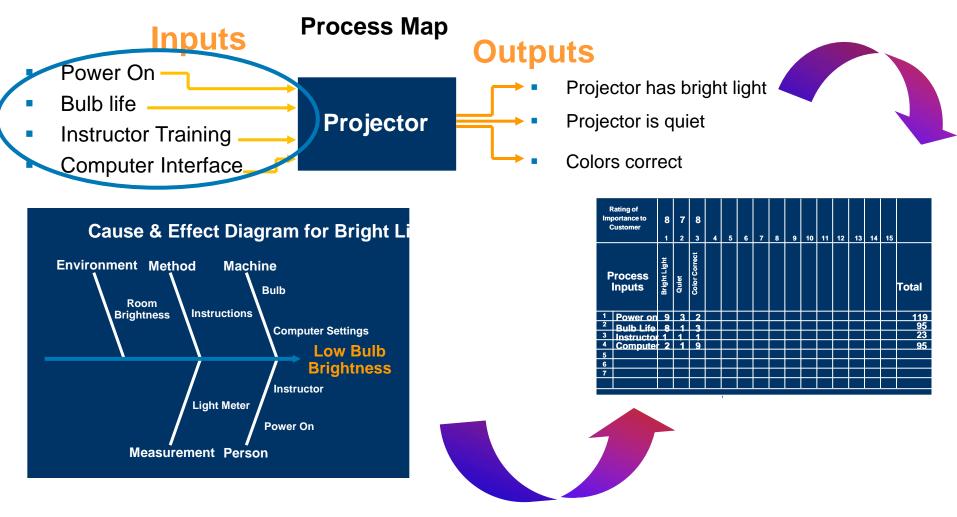
Selecting the Response Step 3


A response is the output linked to the customer CTQ

- Usually quantitative (continuous)
 - Yield
 - Level of purity
 - Effort Variance
 - Energy consumed
- May be qualitative (discrete)
 - Bubbles in glass plate
 - Defective Coding
- Comes from Define and Measure Phase
 - Voice of the Customer
 - C&E, FMEA, process map and other

www.anexas.net

Response Relationship to Other Tools


Selecting the Factors Step 4

A factor is one of the inputs suspected of influencing the response

- May be qualitative (discrete)
 - Different operators
 - Different shifts
 - Different Resources
- May be quantitative (continuous)
 - Pressure
 - Pull back angle
- Comes from Measure and Analyze Phase
 - C&E, FMEA, process map and other
 - Hypothesis testing

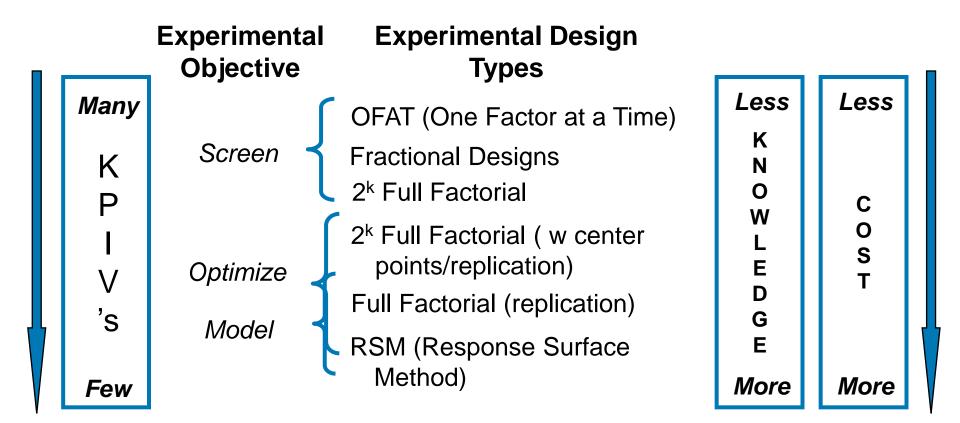
Response Relationship to Other Tools

Selecting the Factor Levels Step 5

The factor levels are the range of values of the input under study

- Qualitative (discrete) inputs
 - operator 1, operator 2, operator 3...
 - shift 1, shift 2, shift 3 ...
 - pin loc 1, 2
- Quantitative (continuous) inputs
 - 50, 75, 100 psi
 - 160, 170, 180 degrees
- Process knowledge/inference space

Consider what works, what could work and what won't hurt

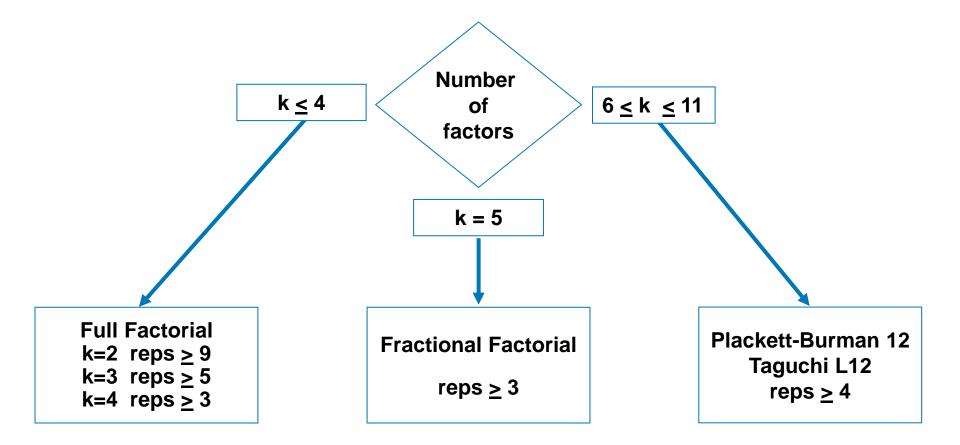

Select the DOE Design Step 6

The selected design should align with the objectives of the experiment and resource commitment

- OFAT (One Factor at a Time)
- 2k-n Fractional Factorial Designs
- 2k Full Factorial
- Full Factorial (replication)
- RSM (response surface method)

Experimental Design Considerations

Higher complexity designs offer greater knowledge at a higher price


www.anexas.net

Determine Sample Size Step 7

- The type of design determines minimum number of samples (replicates/repeats). Considerations for replicates
 - Multiple runs help identify data and measurement errors
 - Screening for main effects requires fewer replicates
 - Modeling designs require more replicates to have confidence in prediction models
 - Detectable effect
 - Resources

Two Level Sample Size

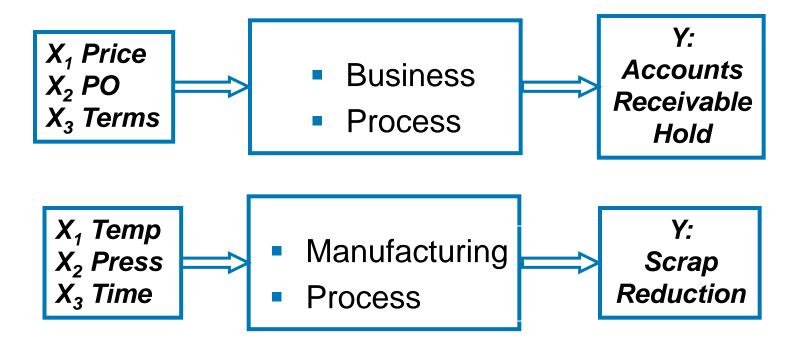
Provides greater than 99% confidence in mean and 95% confidence in variance prediction models

www.anexas.net

Run the Experiment Step 8

- Manage resources
 - Assign tasks
 - Stage supplies
- Have contingency plan
 - Personnel changes
 - Business changes
 - Botched runs
- Statistical common sense
 - Randomize runs if possible
 - Replicate and/or repeat

DOE Strategy Exercise


- Break into table teams. Select two projects at each table (one industrial process and one business process).
 Using flip charts list the Planning Phase elements for each project.
- Be prepared to discuss your learnings.

Anexas Consultancy Services

Factors and the Process

DOE can be applied to both business and industrial processes

www.anexas.net

Organizing the Factors

 The best conceived experiment will fail if executed poorly. Defining the factor settings and capturing the process response(s) properly is paramount to a successful DOE.

	INPUT FACTORS			OUTPUT RESPONSE REPLICATES					STATISTCAL ANALYSIS	
RUN	X ₁	X ₂	X ₃	Y ₁	Y ₂	-	-	Y _n	Ybar	S
1										
2										
3										
4										
-										
-										
-										
n										

A matrix that clearly defines the input settings to the output response showing the flow of the experiment is a must

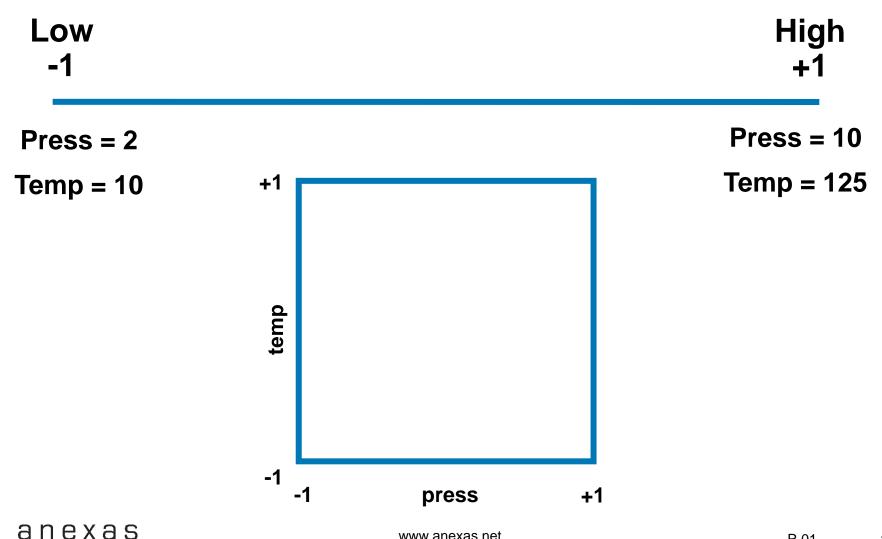
Factors at Two Levels

Many experiments will be quite successful when only two levels of each factor are studied.

	INPUT FACTORS			OUTPUT RESPONSE REPLICATES					STATISTCAL ANALYSIS	
RUN	X ₁	X ₂	X ₃	Y ₁	Y ₂				Ybar	S
1	234	1	0.0345						11	1.46
2	116	1	0.0737		Evnor	imonta		14	2.03	
3	234	2	0.0737		Experimental Data				9	2.18
4	116	2	0.0345		Pla	aced H	ere		16	4.22
-										
-										
-										
n										

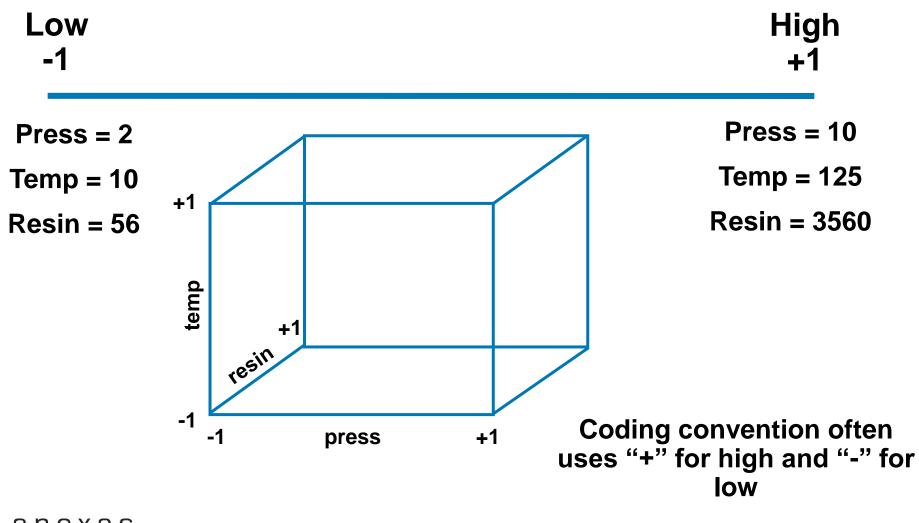
The matrix of inputs should be arranged to reduce or eliminate correlation between factors

Anexas Consultancy Services


Coding

Factors and Scale of Units

Representation of the inference space is often related to the linear scale of units of the factors 125 108 temp temp 100 2 20 press It would be advantageous to 100 2 normalize the range of factors to a press 10 common scale



Concept of Coding

Coding Three Factors

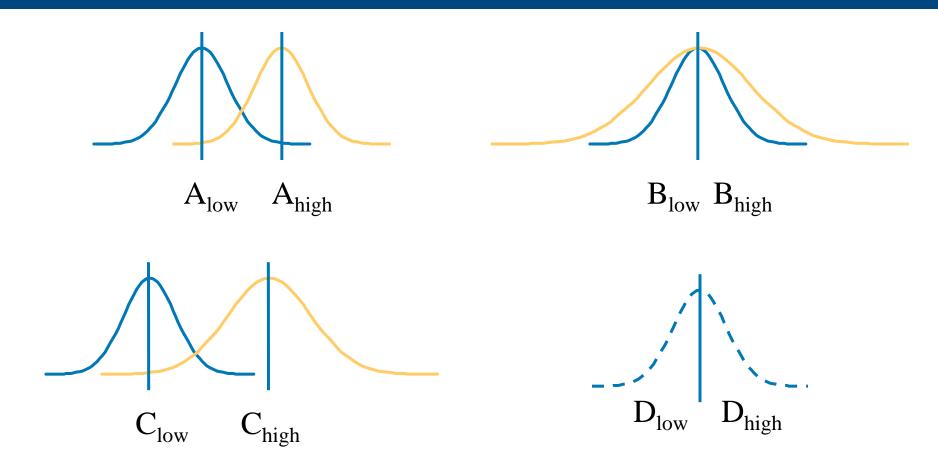
Class Coding Exercise

Transform the uncoded factor levels to coded factor levels using "+" and "-"

	UNCODED INPUT FACTORS			CODED INPUT FACTORS			OUTPUT RESPONSE			STATISTCAL ANALYSIS	
RUN	X ₁	X ₂	X ₃	X ₁	X ₂	X ₃	Y ₁	Y ₂	Y _n	Ybar	S
1	234	1	0.0345							11	1.46
2	116	1	0.0737							14	2.03
3	116	2	0.0737							9	2.18
4	234	2	0.0345							16	4.22
-											
-											
-											
n											

Why Code?

- Allows experimenter to focus on the design
- Shows the design generation clearly
- Permits easier mathematical analysis
- Produces fewer data entry errors
- Reduces analysis errors
- Manages magnitude of scale


Coding is the standard practice for experimental design

Anexas Consultancy Services

Exploring Factor Effects

How Factors Affect a Response

Which factors affect mean or variation?

Anexas Consultancy Services

One Factor at a Time (OFAT) Experiments

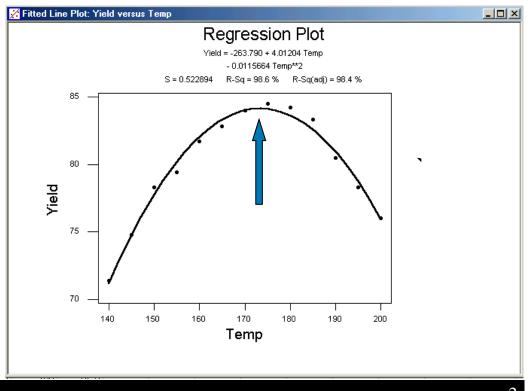
One Factor at a Time

 A process has two variable inputs: flow and temperature. Historically the process has run with flow = 18 and temp = 160 with a yield of 81.7%.

Flow	Temp	Yield
11000	Temp	Пеіц
18	140	71.4
18	145	74.8
18	150	78.3
18	155	79.4
- 18	160	81.7
18	165	82.8
18	170	84.0
18	175	84.5
18	180	84.2
18	185	83.3
18	190	80.5
18	195	78.3
18	200	76.0

www.anexas.net

One Factor at a Time Data Analysis First Step


[Flow	Temp	Yield	
-	18	140	71.4	
	18	145	74.8	
	18	150	78.3	
Old setting	18	155	79.4	Hig
	18	160	81.7	ing
	18	165	82.8	
New setting	18	170	84.9	
	18	175	84.5	
	18	180	84.2	
	18	185	83.3	
	18	190	80.5	
	18	195	78.3	
	18	200	76.0	

Higher yield is obtainable, but at a higher temperature (cost)

Data is used for a regression analysis

One Factor at a Time Data Analysis Second Step

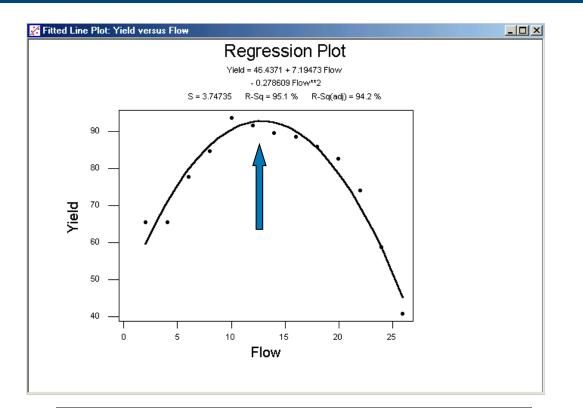
Regression analysis provides an equation which can be solved for temperature

 $Y = -263.79 + 4.012Temp - 0.011566Temp^{2}$

Another test is planned to study flow at the "optimum" temperature of 174.4°C

www.anexas.net

One Factor at a Time Data Analysis Third Step


[Flow	Tomp	Viold
	Flow	Temp	Yield
	2	174.4	65.5
	4	174.4	65.5
	6	174.4	77.8
	8	174.4	84.8
New setting	10	174.4	90.8
	12	174.4	91.8
	14	174.4	89.8
Old setting	16	174.4	88.8
	18	174.4	84.5
	20	174.4	82.8
	22	174.4	74.2
	24	174.4	58.8
	26	174.4	40.8

Higher yield at lower flow is found, but is this the true optimum?

Data is used for a regression analysis

One Factor at a Time Data Analysis Fourth Step

Regression analysis provides equation which can be solved for flow

$Y = 46.437 + 7.195 Flow - 0.2786 Flow^2$

Another test is planned to study temp at the "optimum" flow of 12.9 lpm

www.anexas.net

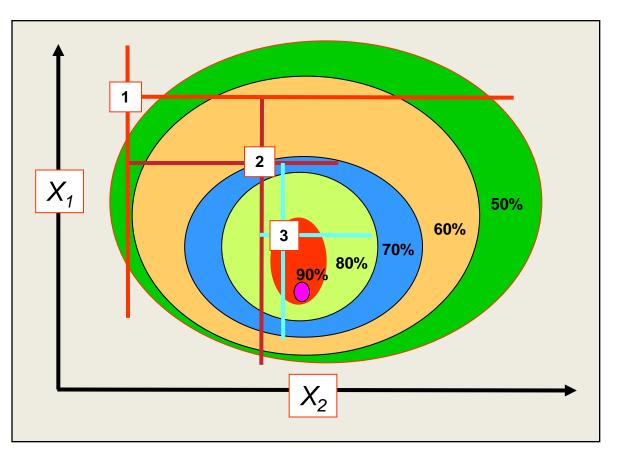
One Factor at a Time Data Analysis Fifth Step

- Repeat steps 1 4 until satisfied "optimum" is found
- Each cycle will produce an equation for yield versus temperature
- Each cycle will produce an equation for yield versus flow
- Solve equations iteratively
- Repeat cycle, obtaining NEW equations

OFAT Equations

- Each cycle produces a set of independent, simultaneous equations describing the process
- First cycle:

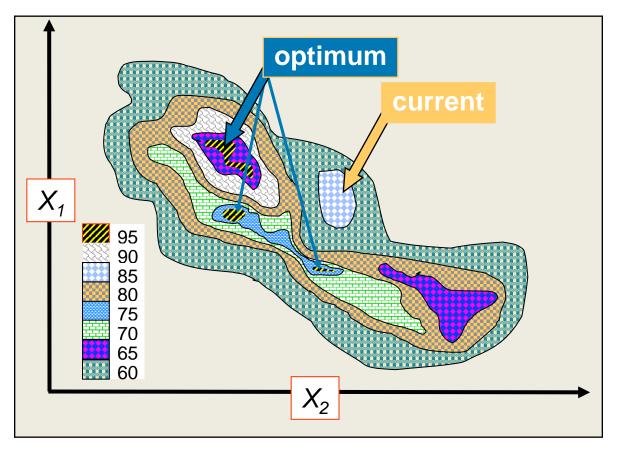
 $Y = -263.79 + 4.012Temp - 0.011566Temp^{2}$ $Y = 46.437 + 7.195Flow - 0.2786Flow^{2}$


Subsequent cycles:

$$Y = f(Temp)$$
$$Y = f(Flow)$$

OFAT will generate a family of independent prediction equations that do not readily lead to the optimum solution

OFAT Prediction Contours


One factor at a time presumes a nested family of responses

Factor interactions are missed with OFAT

www.anexas.net

Process Response Contours

More often than not, the response contours of a process contain many peaks and valleys created by the interaction of factors

OFAT optimization can become inefficient and sometimes misleading

www.anexas.net

Prediction Equations

 More useful and efficient is one equation that predicts the output as a function of all factors

$$\hat{Y} = f(temp, press)$$
$$\hat{Y} = f(A, B, C...)$$

- This type of equation has multiple factors. It will contain:
 - Main effects
 - Interactions

General Form of DOE Prediction Equations

 The general full equation has all combinations and power terms

 $\hat{Y} = b_0 + b_1 Flow + b_2 Temp + b_3 Flow * Flow + b_4 Flow^2 + \dots$

 Most DOE experiments will use the linear solution of the general equation to define the response

 $\hat{Y} = b_0 + b_1 A + b_2 B + b_3 C + b_4 A B + b_5 A C + \dots + b_7 A B C$

DOE equations will deal with a linear subset of the general equation

Capturing Interactions

Statistically based designs provide information about factors and interactions

- 2k-n Fractional Factorial Designs
- 2k Full Factorial
- Full Factorial (replication)
- RSM (response surface method)

Revealing information about main effects and interactions is key to process understanding

Prepared to Explore DOE

iii D	oE 3 Facto	r 2 Level **	E					
Ŧ	C1	C2	C3	C4	C5	C6	C7	C8
	StdOrder	RunOrder	CenterPt	Blocks	Α	В	С	
1	6	1	1	1	1	-1	1	
2	3	2	1	1	-1	1	-1	
3	2	3	1	1	1	-1	-1	
4	1	4	1	1	-1	-1	-1	
5	8	5	1	1	1	1	1	
6	7	6	1	1	-1	1	1	
7	4	7	1	1	1	1	-1	
8	5	8	1	1	-1	-1	1	
9								

Minitab will be the tool for creating and analyzing DOE experiments in the Breakthrough Strategy ™

Key Learning Points

Objectives Review

By the end of this module, the participant should:

- Understand the strategy behind Design of Experiments (DOE)
- Create a design matrix
- Code factors
- Understand the limitations of OFAT experiments
- Interpret interactions

Anexas Consultancy Services

Full Factorial Design of Experiments

Module Objectives

By the end of this module, the participant will:

- Generate a full factorial design
- Look for factor interactions
- Develop coded orthogonal designs
- Write process prediction equations (models)
- Set factors for process optimization
- Create and analyze designs in Minitab[™]
- Evaluate residuals
- Develop process models from Minitab[™] analysis
- Determine sample size

Why Learn About Full Factorial DOE?

- A Full Factorial Design of Experiment will
- Provide the most response information about
 - Factor main effects
 - Factor interactions
- Provide the process model's coefficients for
 - All factors
 - All interactions
- When validated, allow process to be optimized

What is a Full Factorial DOE

- A full factorial DOE is a planned set of tests on the response variable(s) (KPOVs) with one or more inputs (factors) (PIVs) with all combinations of levels
- ANOVA analysis will show which factors are significant
- Regression analysis will provide the coefficients for the prediction equations
 - Mean
 - Standard deviation
- Residual analysis will show the fit of the model

DOE Terminology

- Response (Y, KPOV): the process output linked to the customer CTQ
- Factor (X, PIV): uncontrolled or controlled variable whose influence is being studied
- Level: setting of a factor (+, -, 1, -1, hi, lo, alpha, numeric)
- Treatment Combination (run): setting of all factors to obtain a response
- Replicate: number of times a treatment combination is run (usually randomized)
- **Repeat**: non-randomized replicate
- Inference Space: operating range of factors under study

Full Factorial DOE Objectives

- Learning the most from as few runs as possible..
- Identifying which factors affect mean, variation, both or have no effect
- Modeling the process with prediction equations,

$$\hat{Y} = f(A, B, C...)$$

$$\hat{s} = f(A, B, C...)$$

- Optimizing the factor levels for desired response
- Validating the results through confirmation

Anexas Consultancy Services

Linear Combinations of Factors for Two Levels

Combinations of Factors and Levels

- A process whose output Y is suspected of being influenced by three inputs A, B and C. The SOP ranges on the inputs are
 - A 15 through 25, by 1
 - B 200 through 300, by 2
 - C 1 or 2
- A DOE is planned to test all combinations

Is testing all combinations possible, reasonable and practical?

Combinations of Factors and Levels cont'd

- Setting up a matrix for the factors at all possible process setting levels will produce a really large number of tests.
- The possible levels for each factor are
 - A = 11
 - B = 51
 - C = 2
- How many combinations are there?

Α	В	С
15	200	1 1 1 1 1
16	200	1
17	200	1
18	200	1
19	200	1
20	200	1 1 1 1 1
21	200	1
22	200	1
23	200	1
24	200	1
25	200	1 1 1
15	202	1
16	202	1
17	202	1
-	-	-
-	-	-
-	-	-
	-	-
22	300	2
23	300	2 2 2 2 2
24	300	2
25	300	2

We must make assumptions about the response in order to manage the experiment

147

Linear Response for Factors at Two Levels

- The team decides, from process knowledge, that the response is close to being linear throughout the range of factor level settings (inference space).
- A reasonable assumption for most processes
- The levels of the factors for the test would then be
 - A 15 and 25
 - B 200 and 300
 - C 1 and 2

The design becomes much more manageable!

The Three Factor Design at Two Levels

 The revised experiment consists of all possible combinations of A, B and C each at the chosen low and high settings:

A	В	С
15	200	1
15	200	2
15	300	1
15	300	2
25	200	1
25	200	2
25	300	1
25	300	2

This is a 2³ full factorial design (pronounced two to the three). It consists of all combinations of the three factors each at two levels

Naming Conventions

 The naming convention for full factorial designs has the level raised to the power of the factor:

(factor)

- and is called "a (level) to the (factor) design"
- What would a two level, four factor design be called?
- How many combinations (runs) are in a 23 design?

Class Exercise

 Write the total number of combinations for the following designs

2³

24

Α	В	С	D

 Assume factors are named A, B, C, D, etc. and the levels are low "-" and high "+".

Did we all generate the same designs?

Anexas Consultancy Services

The Yates Standard Order

A method to generate experimental designs in a consistent and logical fashion was developed by Frank Yates.

The Yates Standard Order Step 1

Create a matrix with factors along the top, runs down the left side (2³ example shown)

	Factors			
Runs	Α	В	С	
1				
2				
3				
4				
5				
6				
7				
8				

www.anexas.net

For a 2^3

there will

be 8 runs

The Yates Standard Order Step 2

Starting with the first factor, insert its low value in the first row followed by its high value in the second row. Repeat through the last row.

_	Factors			
Runs	Α	В	С	
1	15			
2	25			
3	15			
4	25			
5	15			
6	25			
7	15			
8	25			

The Yates Standard Order Step 3

Move to the next factor and place its low value in the first two rows, followed by its high value in the next two rows. Repeat through the last row.

	Factors			
Runs	Α	В	С	
1	15	200		
2	25	200		
3	15	300		
4	25	300		
5	15	200		
6	25	200		
7	15	300		
8	25	300		

The Yates Standard Order Step 4

Move to the next factor and place its low value in the first four rows, followed by its high value in the next four rows. Repeat through the last row.

_	Factors			
Runs	Α	В	С	
1	15	200	1	
2	25	200	1	
3	15	300	1	
4	25	300	1	
5	15	200	2	
6	25	200	2	
7	15	300	2	
8	25	300	2	

The Yates Standard Order Step N

Continue the pattern until all factors are included

Yates Design Generator					
Factor	Row	Pattern			
1st	1 low	1 high			
2nd	2 low	2 high			
3rd	4 low	4 high			
	•				
	•				
nth	2n-1 low	2n-1 high			

www.anexas.net

The Yates Standard Order Summary

- The Yates design generator yields all possible combinations of factor levels.
- This is a full factorial two level design for three factors.

	Factors			
Runs	A	В	С	
1	15	200	1	
2	25	200	1	
3	15	300	1	
4	25	300	1	
5	15	200	2	
6	25	200	2	
7	15	300	2	
8	25	300	2	

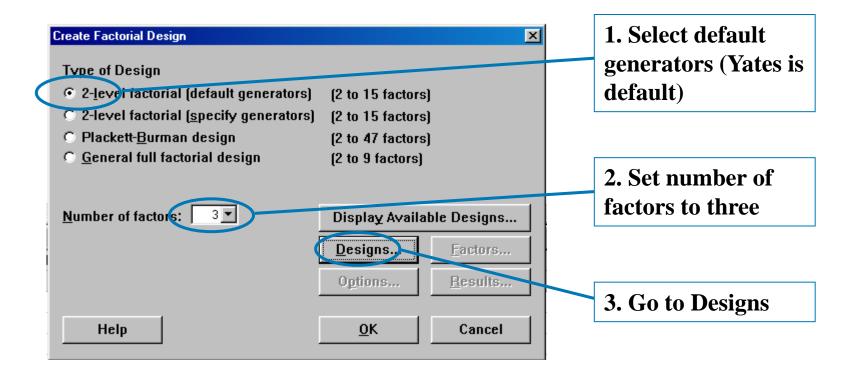
Class Exercise

- Write the total number of combinations for the following designs using the Yates Standard order design generator.
- **2**³
- **2**⁴
- Assume factors are named A, B, C, D, etc. and the levels are low = "-" and high = "+".

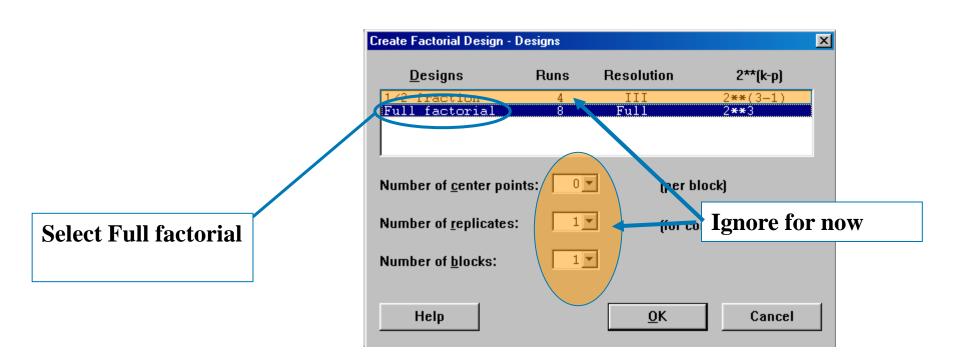
Did we all generate the same designs?

Anexas Consultancy Services

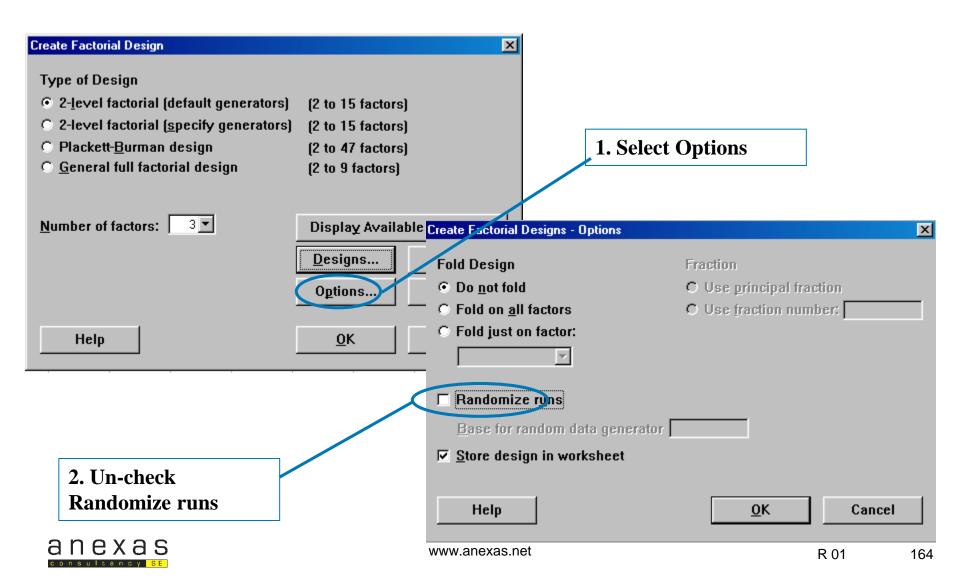
Creating a Full Factorial Design in Minitab[®]

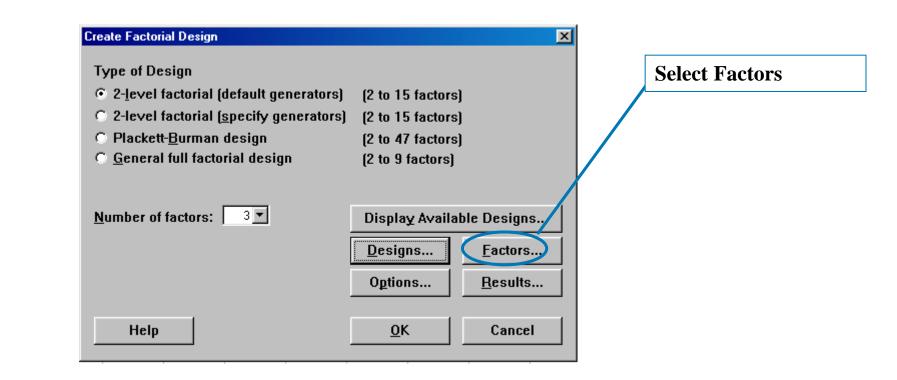

Tool Bar Menu > Stat > DOE > Factorial > Create Factorial Design

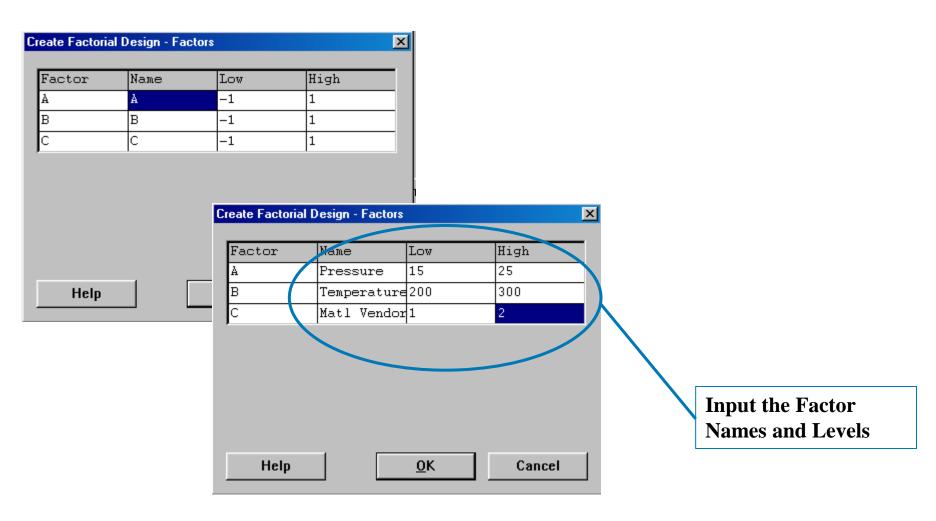
- Create a Minitab® design for
 - A pressure
 - B temperature
 - C material vendor



<u>Stat</u> <u>G</u> raph E <u>d</u> itor <u>W</u> ind	w <u>H</u> elp	
<u>B</u> asic Statistics <u>R</u> egression <u>A</u> NOVA		* 6 6 8
<u>D</u> 0E	<u>F</u> actorial ► <u>C</u> reate Factorial D	esign
<u>C</u> ontrol Charts	Response Surface Define Custom Fa	ctorial Design
Quality Tools Reliability/Survival	Mixture ⊥aguchi ▲nalyze Factorial I Factorial Plots	Design
<u>M</u> ultivariate Time <u>S</u> eries <u>T</u> ables	Modifu Design	Wireframe) Plots Plot
Nonparametrics	<u>R</u> esponse Optimiz	
<u>E</u> DA <u>P</u> ower and Sample Size		







Create Factorial Design		×
Type of Design		
• 2-level factorial (default generators)	(2 to 15 factors)	l
• 2-level factorial (specify generators)	(2 to 15 factors)	l
O Plackett- <u>B</u> urman design	(2 to 47 factors)	1
C General full factorial design	(2 to 9 factors)	
Number of factors: 3	Display Availa	ble Designs
	<u>D</u> esigns	<u>F</u> actors
ĺ	Options	<u>R</u> esults
Help	<u>0</u> K	Cancel

Design parameters are entered; ready to create the design in the worksheet.

www.anexas.net

W	orksheet 1							
+	C1	C2	C3	C4	C5	C6	C7	C8
	StdOrder	RunOrder	CenterPt	Blocks	Pressure	Temperature	Matl Vendor	
1	1	1	1	1	15	200	1	
2	2	2	1	1	25	200	1	
3	3	3	1	1	15	300	1	
4	4	4	1	1	25	300	1	
5	5	5	1	1	15	200	2	
6	6	6	1	1	25	200	2	
7	7	7	1	1	15	300	2	
8	8	8	1	1	25	300	2	
9								

This is the Yates Standard order for a 2³ uncoded design

Std Order Column of Minitab Design

📲 Worksheet 1 🎫

+	C1	C2	C3	C4	C5	C6	C7	C8
	StdOrder	RunOrder	CenterPt	Blocks	Pressure	Temperature	Mati Vendor	
1	1	1	1	1	15	200	1	
2	2	<u> </u>	1	1	25	200	1	
3	3	The S	tdOrde	er 1	15	300	1	
4	4	Colur	Column is the		25	300	1	
5	5	Yates	Standa	rd ¹	15	200	2	
6	6	Orde	r	1	25	200	2	
7	7		- -	1	15	300	2	
8	8	8	1	1	25	300	2	
9								

Run Order Column of Minitab Design

Worksheet 1 ***									
+	C1	C2	C3	C4	C5	C6	C7	C8	
	StdOrder	RunOrder	CenterPt	Blocks	Pressure	Temperature	Mati Vendor		
1	1	1			15	200	1		
2	2	2	RunC		25	200	1		
3	3	3	Colur	nn is	15	300	1		
4	4	4	the		25	300	1		
5	5	5	seque	ence	15	200	2		
6	6	6	of the		25	200	2		
7	7	7			15	300	2		
8	8	8			25	300	2		
9									

StdOrder is created by the design choice RunOrder is created by randomize runs choice

Class Exercise Part 1

- Generate the previous design with the randomize runs tic box selected
- Compare results with your neighbors

Class Exercise Part 2

Create a non random Minitab design for the following: The factors are

	NAME	LEVEL			
		(Low	High)		
A B C D	Customer Type System Warehouse Overtime Hours	Retail Legacy Atlanta 0	Consumer SAP Dallas 100		

The response is on-time delivery.

Be prepared to present your results.

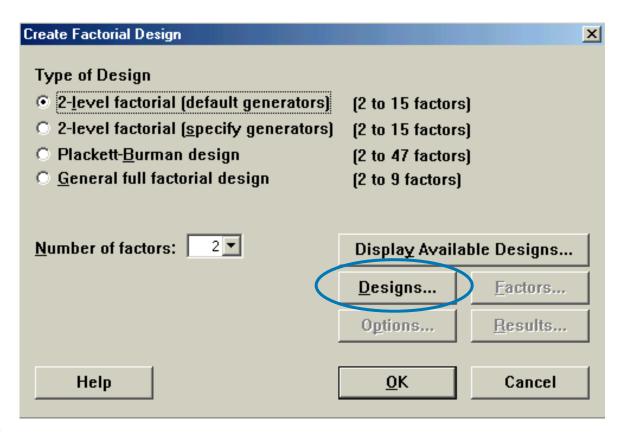
Anexas Consultancy Services

Replicates and Repeats

What are Replicates and Repeats?

- Replicate
- Total run of all treatment combinations
 - Usually in random order
- Requires factor level change between runs
- All experiments will have one replicate
 - Two replicates are two complete experiment runs
- Statistically best experimental scenario Repeat (also repetition)
- Additional run without factor level change

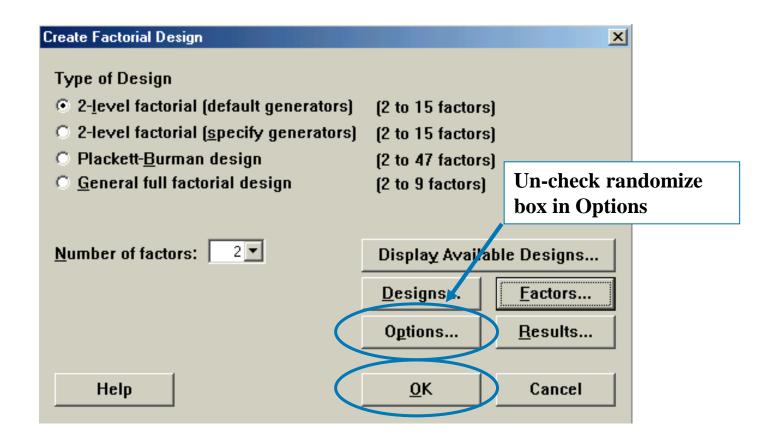
Minitab Design Replication


- Minitab easily handles replicating the design
- Replicate or repeat is treated same in design
- Actual factor level change between runs is at the discretion of the experimenter
 - Minitab provides treatment combination
 - Randomization or information needed is part of strategy of experiment

Replication in Minitab Step 1

Tool Bar Menu > Stat > DOE > Factorial > Create Factorial Design

Create a 2² with two non randomized replicates



Replication in Minitab Step 2

Create Factorial Design -	Designs		×
<u>D</u> esigns	Runs	Resolution	2**(k-p)
Full factorial	4	Full	2**2
Number of <u>c</u> enter po	ints: 0	(per	block)
Number of <u>r</u> eplicates	: 2	(for a	corner points only)
Number of <u>b</u> locks:	1		
Help		<u>0</u> K	Cancel

Replication in Minitab Step 3

Skip the other dialog options

Replication in Minitab Step 4

Worksheet 1 ***									
÷	C1	C2	ជ	C4	വ	C6	C7		
	StdOrder	RunOrder	CenterPt	Blocks	Α	В			
1	1	1	1	1	-1	-1			
2	2	2	1	1	1	-1	First		
3	3	3	1	1	-1	1	Replicate		
4	4	4	1	1	1	1			
5	5	5	1	1	-1	-1			
6	6	6	1	1	1	-1	Second		
7	7	7	1	1	-1	1	Replicate		
8	8	8	1	1	1	1			
9									

Response Y would be placed in C7

Randomized Replication in Minitab for Step 4

Worksheet 2 ***								
+	C1	C2	C3	C4	CS	C6	C7	
	StdOrder	RunOrder	CenterPt	Blocks	Α	В		
1	7	1	1	1	-1	1		
2	4	2	1	1	1	1		
3	5	3	1	1	-1	-1		
4	3	4	1	1	-1	1		
5	8	5	1	1	1	1		
6	2	6	1	1	1	-1		
7	1	7	1	1	-1	-1		
8	6	8	1	1	1	-1		
9								

Response Y would be placed in C7

Anexas Consultancy Services

Coding the Design

Coding the design by transforming the low factor level to a "-1" and the high factor level to a "+1" offers analysis advantages

Coding Review Exercise

Fill in the coded design based upon the uncoded design

	Uncoded Factors		tors	Coded Factors		
Runs	Α	В	С	Α	В	С
1	15	200	1			
2	25	200	1			
3	15	300	1			
4	25	300	1			
5	15	200	2			
6	25	200	2			
7	15	300	2			
8	25	300	2			

Any uncoded design can be transformed into a coded design

182

Requirement of Factor Independence

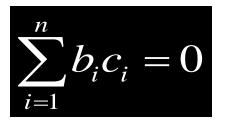
- Factors are mathematically independent when only the response is a function of the factors
- A factor is not a function of another factor
- The coded design is orthogonal
 - Factors will be independent

DOE analysis requires that the factors be independent

Anexas Consultancy Services

Orthogonal Designs

Determining Orthogonality

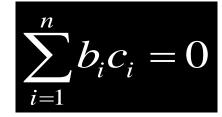

Consider the 2² design

	Coded	Coded Factors		
Runs	X ₁	X ₂	Y	
1	-1	-1	(y ₁)	
2	1	-1	(y ₂)	
3	-1	1	(y ₃)	
4	1	1	(y ₄)	

The run outputs, Y_n, can be described by

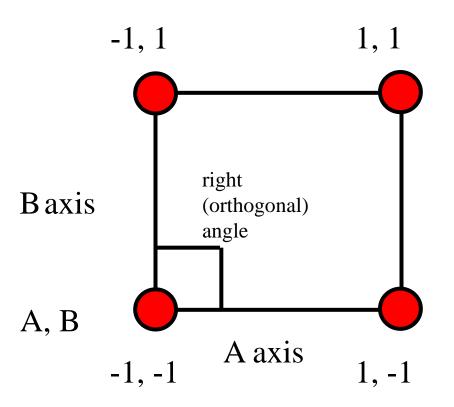
where b and c are coded settings of the factors

It can be shown that for X_1 to be independent of X_2



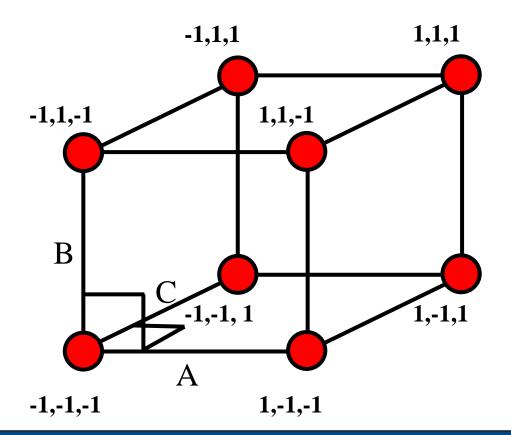
Calculating Orthogonality

	Coded	Factors	Coef1*coeff2	
Runs	X1	X2	X1*X2	
1	-1	-1	1	
2	1	-1	-1	
3	-1	1	-1	
4	1	1	1	
		Σ	0	


Satisfies

Therefore orthogonal and independent

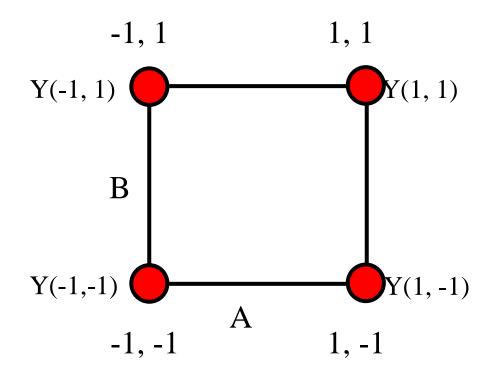
Coding and Orthogonality for a 2² Design



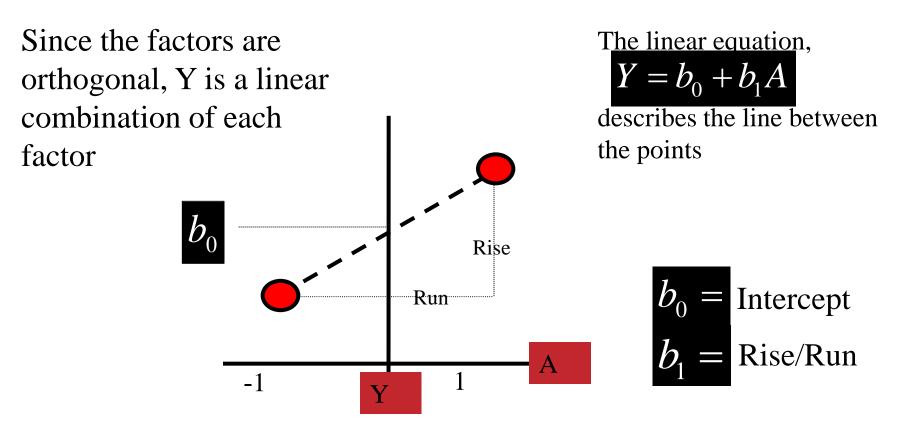
Orthogonal designs can be represented as a geometric (mathematical) figure

www.anexas.net

Coding and Orthogonality for a 2³ Design


The vertices are the response measurement points; the volume within is the inference space

www.anexas.net


Response and Orthogonality

The response can be measured at each corner of the design, as represented by Y(A,B).

Coding and the Linear Model

Fitting a linear model to the coded design becomes very easy

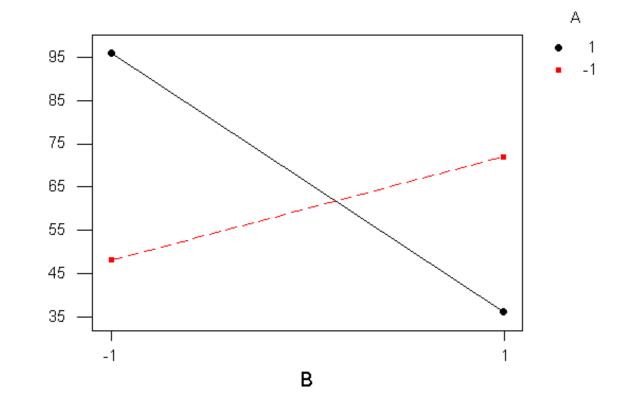
Anexas Consultancy Services

Main Effects and Interactions

Calculating Main Effects

A DOE is run:

	Coded	Factors	Response	
	Α	В	Y	
	-1	-1	48	
96+36	1	-1	96	
$\frac{30+30}{2} = 66$	-1	1	72	
	-(1	36	
Yave at FACTORhigh	66	54		
Yave at FACTORIow	60	72		What does a non-
Effect	6	-18		zero effect mean?


effect = Y(@ factorhigh) - Y(@ factorlow)

The factor (or main) effects are easily calculated

192

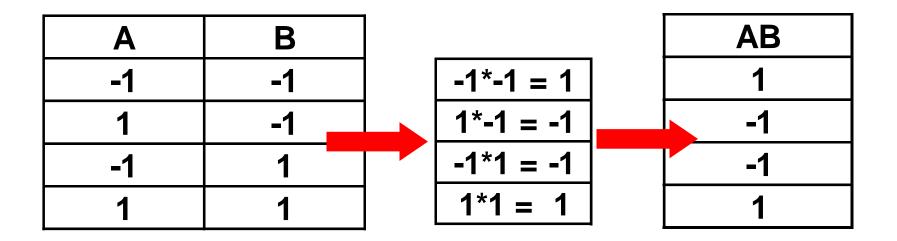
Discovering Interactions

A response change due to both A and B changing is called an interaction

193

Linear Prediction Equation With Interaction Term

 The interaction will add a term to the linear equation


Y = b0 + b1 A + b2 B + b3 AB

- A and B are the main effects
- AB is the interaction
- b0 is the grand mean (intercept)
- b1, b2, and b3 are the term coefficients

Coded Values for Interactions

The coded value matrix for an interaction is the product of the factor coded values:

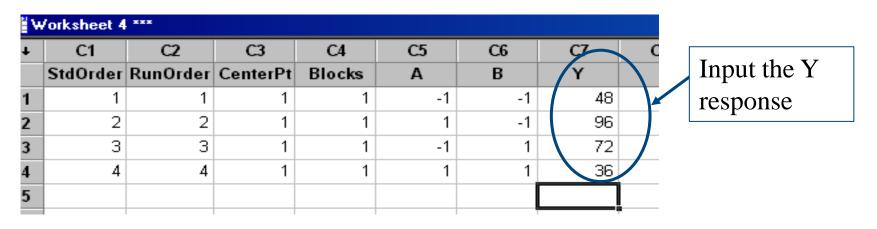
Finding the interaction levels in a coded design is as simple as multiplying one times one

Calculating Interaction Effects

The DOE again

	Coded	Factors	Interaction	Response
This is the Yates	Α	В	AB	Y
Standard Order for a	-1	-1	1	48
2^2 coded design with	4	-1	-1	96
interaction	-1	1	-1	72
	1	1	1	36
Yave at FACTORhigh	66	54	42	
Yave at FACTORIow	60	72	84	
Effect	6	-18	-42	

The interaction is set by the design (math) based upon the factor settings

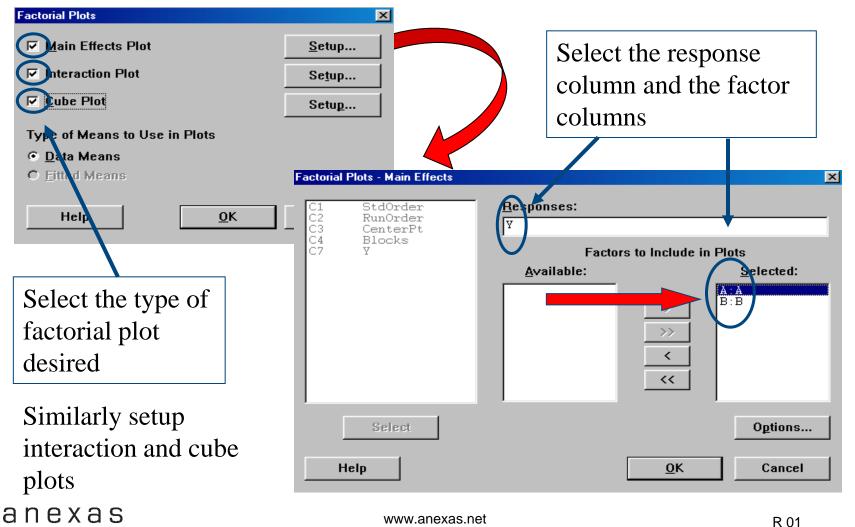

Anexas Consultancy Services

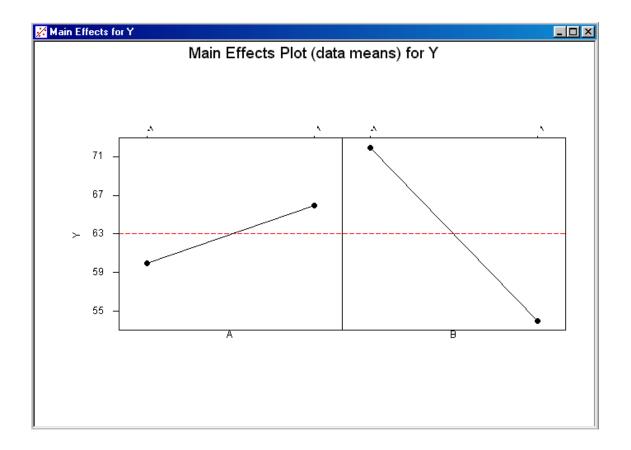
Main Effects, Interactions and Cube Plots in Minitab

Create the Experiment

Tool Bar Menu > Stat > DOE > Factorial > Factorial Plots

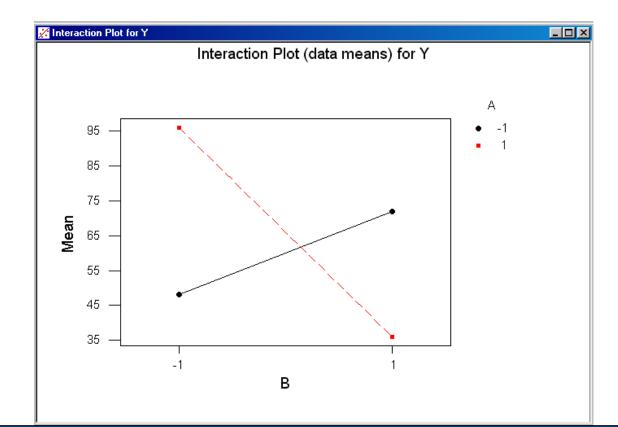
Create a 2² coded design for factors A and B.


Basic Statistics Begression ANOVA	:		록щ₩┙∅∅⊙窙
DOE Control Charts Quality Tools Reliability/Survival		Factorial Response Surface Migture ⊥aguchi	<u>C</u> reate Factorial Design <u>D</u> efine Custom Factorial Design <u>Analyze Factorial Design</u> <u>Factorial Plots.</u>
<u>Multivariate</u> Time <u>Series</u> <u>I</u> ables Vorparametrics		Modify Design Display Design	Cogtour/Surface (Wireframe) Plots Liverlaid Contour Plot Besponse Optimizer
. EDA Power and Sample	Size +	1	Hesponse Uptrizer

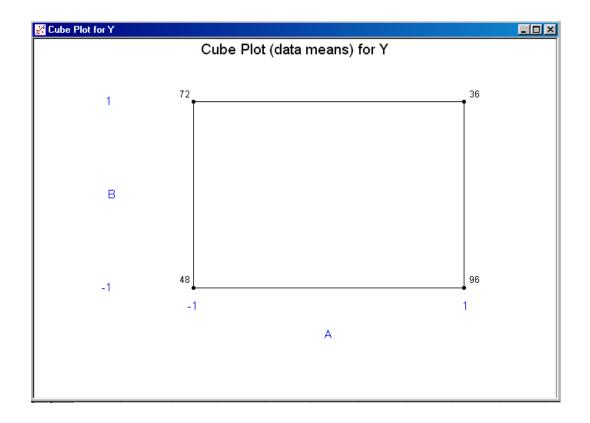

198

Anexas Europe – Lean and Six Sigma Training and Certification

Factorial Plots in Minitab Step 1


Main Effects Plot

The response is plotted by factor from low level to high level


Interaction Plot

Parallel lines indicate no interaction; the less parallel, the higher the degree of interaction

Cube Plot

The response is plotted on the orthogonal factor axis

Using the Minitab file to create all three factorial plots.

Be prepared to discuss your results.

Anexas Consultancy Services

Chapter 4: Project closure

Goal

 Identify ways to bring a project to closure in your own organization

Importance of Closure

- Recognize the considerable time and effort that went into the initiative
- Capture the learnings from the initiative:
 - About the problem or process being studied
 - About the improvement process itself
- Hand over responsibilities for standardization and monitoring to the appropriate people

Project Closure

- Improvement must be continuous, but individual initiatives and project teams come to an end
- Learn when it is time to say good-bye
- Effective project closure weaves together the themes of:
 - Project purpose
 - Improvement methods
 - Team skills and structures
- Develop managerial systems to capture learnings and enable the organization to address system issues
- Documentation and recognition are two critical aspects of project team closure

Exercise: Closure

Objective: Build awareness of how to successfully bring a project to a close

Instructions:

- Work in pairs or small groups to answer the following questions:
 - What would indicate that a team had ended well? What would indicate
 that a team had not formally along of an had not denot it wall? For
 - that a team had not formally closed or had not done it well? Explain
 - Think of teams that have completed their work—what methods of closure were used by these teams? How effective were they? How do you know?
- Be prepared to share your answers with the whole group

Time: 10 minutes

Closure Checklist

- 1. Avoid needless continuation
- 2. Summarize learnings:
 - About the work process
 - About the team's process
 - About your results
- 3. Finalize documentation on improvements
- 4. Summarize future plans and recommendations
- 5. Communicate the ending
- 6. Celebrate

6 steps to close a Project: Project Closure Process

PLANNER

1. Avoiding Needless Continuation

2. Summarizing Learnings

- About your results
- About the work process
- About the team's process

3. Finalize Documentation on Improvements

- Finish your storyboard:
 - It should contain your final results and conclusions
- Present the completed document to:
 - The sponsors
 - The people whose jobs are changing as a result of the work
 - Customers of the change
 - Other interested people
 - Collect, catalog, and make the documentation available to others

4. Summarize Future Plans and Recommendations

- Have your team discuss the following issues and compile recommendations that you submit to your sponsor or guidance team:
 - What are your recommendations for maintaining the gains already put in place? What role would you like your team to play?
 - How much improvement is still needed to achieve the business goals?
 - What portions of the problem are still left to address? Which of these are the most urgent to address?
 - What would you and your team like to work on next, if approved by management? Where do you think management should devote resources next?

5. Communicate the Ending

- Communicating the team's results is a joint task for the project team and its sponsor or guidance team:
 - If not done already, identify the people who will be involved in implementing the improved methods
 - Which employees could benefit from your lessons learned?
 - How can you communicate to management? To the rest of the organization?
 - How can the end of this project sow the seeds for future projects?

6. Celebration and Recognition

- What is the appropriate way to celebrate this closure (lunch/dinner/dessert)?
- How will you say good-bye?

6. Celebration and Recognition, cont.

- Recognition is an important aspect of celebration and should reinforce intrinsic sources of satisfaction and motivation:
 - Examples:
 - A small souvenir related to the project work
 - A pizza lunch for everyone who was involved in the initiative, including those whose jobs have changed as a result of the initiative

Exercise: Closure in Your Organization

Objective: Understand what parts of closure may be most challenging in your organization

Instructions:

- Work alone or in small groups
- Review at least one of the closure checklist items and discuss how it would work in your organization
- Be prepared to discuss your results with the whole group

Time: 10 minutes

Presentation exercise

- Please present the topic allotted to you

Thank you!

Question time

Stay Connected!

- You can subscribe to Anexas Europe YouTube channel to get access to all the training material on video. <u>https://m.youtube.com/channel/UCAk6IJsnPCsz7-</u> <u>rZTVx90uw</u>
- Please like our page on Facebook to stay updated about the latest videos on Training, Quality, Process
 Excellence and Project management
 https://www.facebook.com/denmarkanexas

Stay Connected!

- Please join Anexas Europe LinkedIn Page for updates about latest developments <u>https://www.linkedin.com/school/9379319/</u>
- Connect with the trainer
 – Amitabh Saxena on his
 LinkedIn account to see his latest videos on training
 quality topics

https://www.linkedin.com/in/amitabhsaxena/

Thank You!

- Congratulations on completing a milestone in your life!
- Best wishes for your MBB journey!

- Amitabh Saxena

Trainer

