{ "cells": [ { "cell_type": "code", "execution_count": 9, "id": "cecbf1a0", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:16:06.909304Z", "start_time": "2022-11-14T16:16:06.273610Z" } }, "outputs": [], "source": [ "import numpy as np \n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns \n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "code", "execution_count": 4, "id": "96f03e29", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:11:20.720238Z", "start_time": "2022-11-14T16:11:20.684572Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123456789...51525354555657585960
00.02000.03710.04280.02070.09540.09860.15390.16010.31090.2111...0.00270.00650.01590.00720.01670.01800.00840.00900.0032R
10.04530.05230.08430.06890.11830.25830.21560.34810.33370.2872...0.00840.00890.00480.00940.01910.01400.00490.00520.0044R
20.02620.05820.10990.10830.09740.22800.24310.37710.55980.6194...0.02320.01660.00950.01800.02440.03160.01640.00950.0078R
30.01000.01710.06230.02050.02050.03680.10980.12760.05980.1264...0.01210.00360.01500.00850.00730.00500.00440.00400.0117R
40.07620.06660.04810.03940.05900.06490.12090.24670.35640.4459...0.00310.00540.01050.01100.00150.00720.00480.01070.0094R
\n", "

5 rows × 61 columns

\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 6 7 8 \\\n", "0 0.0200 0.0371 0.0428 0.0207 0.0954 0.0986 0.1539 0.1601 0.3109 \n", "1 0.0453 0.0523 0.0843 0.0689 0.1183 0.2583 0.2156 0.3481 0.3337 \n", "2 0.0262 0.0582 0.1099 0.1083 0.0974 0.2280 0.2431 0.3771 0.5598 \n", "3 0.0100 0.0171 0.0623 0.0205 0.0205 0.0368 0.1098 0.1276 0.0598 \n", "4 0.0762 0.0666 0.0481 0.0394 0.0590 0.0649 0.1209 0.2467 0.3564 \n", "\n", " 9 ... 51 52 53 54 55 56 57 \\\n", "0 0.2111 ... 0.0027 0.0065 0.0159 0.0072 0.0167 0.0180 0.0084 \n", "1 0.2872 ... 0.0084 0.0089 0.0048 0.0094 0.0191 0.0140 0.0049 \n", "2 0.6194 ... 0.0232 0.0166 0.0095 0.0180 0.0244 0.0316 0.0164 \n", "3 0.1264 ... 0.0121 0.0036 0.0150 0.0085 0.0073 0.0050 0.0044 \n", "4 0.4459 ... 0.0031 0.0054 0.0105 0.0110 0.0015 0.0072 0.0048 \n", "\n", " 58 59 60 \n", "0 0.0090 0.0032 R \n", "1 0.0052 0.0044 R \n", "2 0.0095 0.0078 R \n", "3 0.0040 0.0117 R \n", "4 0.0107 0.0094 R \n", "\n", "[5 rows x 61 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sonar_data = pd.read_csv('/Users/rishavdas/Downloads/Data/sonar_data.csv', header=None)\n", "sonar_data.head()" ] }, { "cell_type": "code", "execution_count": 5, "id": "5265f3b0", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:11:30.517652Z", "start_time": "2022-11-14T16:11:30.509443Z" } }, "outputs": [ { "data": { "text/plain": [ "(208, 61)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sonar_data.shape" ] }, { "cell_type": "code", "execution_count": 6, "id": "bb643596", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:11:53.467352Z", "start_time": "2022-11-14T16:11:53.456149Z" } }, "outputs": [ { "data": { "text/plain": [ "M 111\n", "R 97\n", "Name: 60, dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sonar_data[60].value_counts()" ] }, { "cell_type": "code", "execution_count": 7, "id": "5022feb5", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:13:31.950131Z", "start_time": "2022-11-14T16:13:31.926669Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0123456789...50515253545556575859
60
M0.0349890.0455440.0507200.0647680.0867150.1118640.1283590.1498320.2134920.251022...0.0193520.0160140.0116430.0121850.0099230.0089140.0078250.0090600.0086950.006930
R0.0224980.0303030.0359510.0414470.0620280.0962240.1141800.1175960.1373920.159325...0.0123110.0104530.0096400.0095180.0085670.0074300.0078140.0066770.0070780.006024
\n", "

2 rows × 60 columns

\n", "
" ], "text/plain": [ " 0 1 2 3 4 5 6 \\\n", "60 \n", "M 0.034989 0.045544 0.050720 0.064768 0.086715 0.111864 0.128359 \n", "R 0.022498 0.030303 0.035951 0.041447 0.062028 0.096224 0.114180 \n", "\n", " 7 8 9 ... 50 51 52 53 \\\n", "60 ... \n", "M 0.149832 0.213492 0.251022 ... 0.019352 0.016014 0.011643 0.012185 \n", "R 0.117596 0.137392 0.159325 ... 0.012311 0.010453 0.009640 0.009518 \n", "\n", " 54 55 56 57 58 59 \n", "60 \n", "M 0.009923 0.008914 0.007825 0.009060 0.008695 0.006930 \n", "R 0.008567 0.007430 0.007814 0.006677 0.007078 0.006024 \n", "\n", "[2 rows x 60 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sonar_data.groupby(60).mean()" ] }, { "cell_type": "code", "execution_count": 8, "id": "ba5d6b1e", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:15:30.780755Z", "start_time": "2022-11-14T16:15:30.775524Z" } }, "outputs": [], "source": [ "x =sonar_data.drop(columns=60, axis=1)\n", "y = sonar_data[60]" ] }, { "cell_type": "code", "execution_count": 10, "id": "15d7f5ca", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:16:48.757586Z", "start_time": "2022-11-14T16:16:48.747482Z" } }, "outputs": [], "source": [ "X_train, X_test, Y_train, Y_test = train_test_split(x, y, test_size=0.1, stratify=y, random_state= 1)" ] }, { "cell_type": "code", "execution_count": 11, "id": "de53e35d", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:16:53.768157Z", "start_time": "2022-11-14T16:16:53.762173Z" } }, "outputs": [ { "data": { "text/plain": [ "(187, 60)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train.shape\n" ] }, { "cell_type": "code", "execution_count": 12, "id": "a96b6760", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:16:59.915019Z", "start_time": "2022-11-14T16:16:59.907292Z" } }, "outputs": [ { "data": { "text/plain": [ "(21, 60)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_test.shape" ] }, { "cell_type": "code", "execution_count": 29, "id": "52afbcfc", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:22:06.869375Z", "start_time": "2022-11-14T16:22:06.864001Z" } }, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegression\n", "from sklearn.metrics import accuracy_score\n", "model = LogisticRegression()" ] }, { "cell_type": "code", "execution_count": 31, "id": "f24b1190", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:22:13.281423Z", "start_time": "2022-11-14T16:22:13.253601Z" } }, "outputs": [], "source": [ "model.fit(X_train, Y_train)\n", "y_pred = model.predict(X_train)" ] }, { "cell_type": "code", "execution_count": 21, "id": "cc30be83", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:19:46.454625Z", "start_time": "2022-11-14T16:19:46.448714Z" } }, "outputs": [], "source": [ "training_data_accuracy = accuracy_score(y_pred, Y_train)" ] }, { "cell_type": "code", "execution_count": 22, "id": "88cc423f", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:20:17.233636Z", "start_time": "2022-11-14T16:20:17.227732Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy on training data 0.8342245989304813\n" ] } ], "source": [ "print(\"Accuracy on training data \", training_data_accuracy)" ] }, { "cell_type": "code", "execution_count": 32, "id": "96fe48f8", "metadata": { "ExecuteTime": { "end_time": "2022-11-14T16:22:15.551420Z", "start_time": "2022-11-14T16:22:15.541970Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.7619047619047619\n" ] } ], "source": [ "y_pred_test = model.predict(X_test)\n", "test_data_accuracy = accuracy_score(y_pred_test, Y_test)\n", "print(test_data_accuracy)" ] }, { "cell_type": "code", "execution_count": null, "id": "d510eca7", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }