Anexas Consultancy Services

ANEXAS EUROPE © CERTIFICATION TRAINING

Lean Six Sigma Black Belt

© All rights reserved

Anexas Consultancy Services

Course Overview

Introductions and Expectations

Introduce yourself to the group:

- Name
- Job
- Any one thing not many people know about you!
- Expectations for the session

3

Ground Rules

- Be on time
- Start and end on time
- Take a spelling holiday
- Participate, don't spectate
- Track issues and questions for later on the parking lot
- ON-LINE TRAINING
 - Keep cameras OFF during the training
 - Please interact using the chat box or comment box
 - If you wish to speak, please unmute yourself and speak and afterwards mute yourself once again
- CLASSROOM TRAINING
 - Don't conduct any side-conversations
 - It's OK to stand up and stretch
 - Turn off your cell phones or set them on vibrate
 - Conduct business at breaks and lunch
- Have fun!

4

Anexas Consultancy Services

Introduction to Anexas

Objectives

- To introduce you to Anexas Consultancy Services
- Introduce the benefits available to Anexas alumni
- Project support details
- Certification process

6

Enabling individuals and organizations achieve excellence since 2006

- Anexas is a global network of lean six sigma and project professionals serving the wide spectrum of industries. We operate in 10 countries and have 25 professionals in the team.
- Our mission is to help organizations and individuals achieve excellence.
- Trained more than 150,000 professionals in Lean and Six Sigma, Project Management and quality related trainings across the world from various industries.
- Lean Green Belts and Black Belts certified by Anexas have completed more than 5000 successful projects under our guidance.

Anexas has won many Project and Quality Management Awards Anexas projects presented in World Conferences in ASQ, IQPC, Dubai Quality Awards, ADIPEC, etc.

9

Satisfying Customers — The Problem

- Best Flour Milling produces and distributes white corn flour to a wide range of customers within the tortilla industry
- The product is shipped in 50-pound multiwall paper bags that are loaded and weighted at the end of the production line

 Defining the problem: Approximately 4% of the bags are found to be either overweight or underweight, an issue that the organization spends an average of approximately US\$5 million per year to address

Satisfying Customers — The Measure

- Best Flour knows that customers will be satisfied if the bag weight remains within agreed-upon limits
- The chart below shows the weight distribution of 1,000 bags taken from the production line, along with the

Measuring Process Capability

We will use the Best Flour example to illustrate how we can use Six Sigma to measure process capability

Processes have

```
\rightarrow A level (e.g., average or mean)
```

 \rightarrow Some measure of variation

How do we measure level and variation?

Measuring the Average

Consider the production of the 50-pound flour bags

Let's take five bags from production and measure their weight

Bag No.	1	2	3	4	5
Weight (pounds)	48	49	50	51	52

Measuring the Average, cont.

We can then calculate the average as follows:

Average =
$$\frac{48 + 49 + 50 + 51 + 52}{5}$$
 = 50 lb

Or, using the formula...

Measuring the Variation Around the Average

Let "S" be the variation around the average

$$S = \frac{ \begin{array}{c} -2 \\ (48-50) + (49-50) + (50-50) \\ 5 \end{array}}{(48-50) + (49-50) + (50-50) + (51-50) + (52-50) \\ 5 \end{array}} = ZERO$$

But, if we square all quantities in the **numerator**...

$$S = \frac{(48 - 50)^2 + (49 - 50)^2 + (50 - 50)^2 + (51 - 50)^2 + (52 - 50)^2}{5} = 2 \text{ sq-lb}$$

Measuring the Variation Around the Average, cont.

Any issues with this?

Measuring the Variation Around the Average, cont.

So...

the square root brings it back to the original unit

Measuring the Variation Around the Average, cont.

The standard deviation formula...

S =
$$\sqrt{\frac{\Sigma (X_i - X_{bar})^2}{n - 1}}$$
 (i = 1, 2, ... n)

Notation			
	Sample	Population	
Mean	Xbar	μ	
Std. Dev.	S	σ	

Understanding "6 Sigma"

Understanding "6 Sigma," cont.

Understanding "6 Sigma"—Conclusion

- Process sigma (a.k.a. sigma quality level):
 - An expression of process "yield" in relation to specification limits
 - It measures in $\boldsymbol{\sigma}$ units the distance between the mean and the spec limits
 - 6σ away from the mean \rightarrow 3.4 defects per million opportunities
- Key concepts:
 - Control limits = Voice of the Process
 - Specification limits = Voice of the Customer

The Best Flour Problem

Here are the control limits and the specification limits

- What is happening with the process?
- What should Best Flour do?

The Best Flour Problem, cont.

Before Improvement: sigma quality level at 2.1

The Best Flour Problem, cont.

After Improvement: sigma quality level at 5.1

Anexas Consultancy Services

The Six Sigma Metric

Discrete Variables

Variables: Continuous vs. Discrete

- Continuous Variables
 - Can be measured on a continuous scale:
 - Length (inches)
 - Temperature (F)
 - Pressure (PSI)
 - Revenues (US\$)
 - Time (hours)
 - Cholesterol (mg/dL)

- Discrete Variables
 - Cannot be measured, only observed, counted, or verified
 - Percent of nonconforming product or service
 - Number of customer complaints
 - Customer satisfaction on a scale from 1 to 10

In this module, we will focus on discrete variables only Later modules address process sigma for continuous variables

а

Process Sigma — Discrete Variables

First we calculate the process yield by obtaining the percent of items conforming to specifications over some given period

- Then, we obtain process sigma from the Six Sigma table (below)
 - Example: over a 7-day period, we produced 200 batches of product and 20 were out of spec

Yield =
$$\frac{180}{200}$$
 = 90% \implies Sigma ≈ 2.8

27

R 01

Different Levels of Process Sigma

 From a broad perspective, consider the following when reviewing different process sigma values:

Too much variation	Hard to produce output within specs	Low sigma values (0 – 2)
Moderate variation	Most output within specs	Middle sigma values (2 – 4.5)
Very little variation	Virtually all output within specs	Hi sigma values (4.5 – 6)

Process Sigma and DPMO

Increase in sigma requires exponential nonconformity reduction

DPMO	σ
308,537	2
66,807	3
6210	4
233	5
3.4	6

Why Use Six Sigma as a Metric?

Process sigma is a more sensitive indicator than percentage

Percent	DPMO	σ
93	66,807	3.0
98	22,750	3.5
99	6,210	4.0
99.87	1,350	4.5
99.977	233	5.0
99.9997	3.4	6.0

Actual Sigma or Rate of Improvement?

- What is most important, the actual sigma level or the rate of improvement in sigma?
 - The calculated process sigma level is influenced by what you define as an "opportunity"—which can be subject to much debate
 - Often, a more enlightening measure of good management is to see how process sigma is changing
 - Increased customer focus and process improvement will be reflected with an increase in process sigma
 - A process sigma that goes up by one unit every year is much more indicative of a customer focus than a process sigma that is constant at 4

Importance of Reducing Variation

To increase a process sigma level, you have to decrease variation

- Less variation means:
 - Greater predictability in the process
 - Less waste and rework, which lowers costs
 - Products and services that perform better and last longer
 - Happier customers

Anexas Consultancy Services

Overview of DMAIC

The Methodology for Process Improvement

The DMAIC Process

Monitor/Measure:

- Standardize process
- Train personnel
- Monitor performance

Generate solutions:

- Set criteria
- Develop/select solutions
- Conduct risk analysis **Implement solutions**:
- Plan and implement
- Consider the human side

Root-cause analysis:

- Investigate root cause
- Verify potential causes

Define:

- Problem
- Team
- Customer

Data:

- Collect
- Plot and analyze

Process:

- Map process
- · Narrow the focus

How Six Sigma Works — DEFINE

- **Goal:** Define the project's purpose and scope
- Output: A clear statement of the intended improvement and how it is to be measured
- Sample tools:

How Six Sigma Works — MEASURE

- Goal: Gather information on the current situation
- Output: A focused problem statement and baseline process sigma
- Sample tools:

How Six Sigma Works — ANALYZE

- **Goal:** Identify deep causes and confirm them with data
- **Output:** A theory that has been tested and confirmed
- Sample tools:
 - Cause-and-effect diagram

(or other tool showing potential causes identified)

Scatter plot, stratified frequency plots, or tables showing verification data

How Six Sigma Works — IMPROVE

- Goal: Develop, test, and implement solutions that address deep causes
- Output: Planned, tested actions that should eliminate identified root causes or reduce their impact
- Sample tools:

How Six Sigma Works — CONTROL

- Goal: Maintain the gains by consistently implementing the new work methods or processes
- Output:
 - Documentation of the new standardized method

Training in the new method

A system for monitoring consistent use of the new method and checking the results

• Sample Tools:

Samples of standardization documentation including revised maps, process management chart, etc.

Overview of DMADV

The Methodology for Process Design

The DMADV Process

Verification/validation:

- · Conduct and evaluate pilot
- Implement design
- Close project

Product/service design:

- Identify and prioritize design elements
- Develop design requirements
- Design product
 and process
- Predict design performance
- Optimize design
- Plan pilot

DESIGN ANALYZE

Conceptual design:

- · Identify and prioritize key functions
- · Generate, evaluate, select, and review key concepts

Define project:

- Develop charter
- Develop project plans
- Develop change plans
- Assess risks
- Review tollgate requirements

Get data:

- Collect VOC data
- Translate VOC into CTQs
- Prioritize CTQs
- Reassess risk

R 01 41

Overview of DMAIC—The Process Improvement Methodology

- Identify the steps and their sequence in DMAIC
- Match each of the steps with its outputs
- Be aware of tools and concepts useful in each step

Why Use an Improvement Methodology?

- Provides a framework
- Provides a common language
- Provides a checklist to prevent skipping critical steps
- Allows you to improve how you improve

Overview of DMAIC

www.anexas.net

DEFINE: Define the Project

Overview

You Are Here — DEFINE

www.anexas.net

DEFINE: Define the Project

Goal

 Define the purpose and scope of the project and get background on the process and customer

Outputs

- A clear statement of the intended improvement and how it is to be measured
- A high-level map of the process
- A translation of the VOC into CTQ
- An initial project plan

Approach to DEFINE

Starting Your Project

How This Work Gets Done

Project Criteria

DMAIC Project Selection Criteria

DMAIC projects will likely have greater success if:

- The problem is related to a key business issue
- The problem is linked to a clearly defined process (you can identify the starting and ending points)
- You can identify the customers who use or receive the output from this process

DMAIC Project Selection Criteria, cont.

DMAIC projects will likely have greater success if (cont.):

- You can clearly identify what a defect is and count its occurrences
- You can demonstrate how improvements could enhance financial performance
- There is appropriate organizational support

Drafting Your Charter

DMAIC Project Charter

Project No.:_

Project Name:	Core Process:		
Resource Plan:	Team Members/Support Resources:		
Black Belt : Sponsor: Process Owner: Six Sigma Leader: Black Belt and Master Black Belt:	Text		
Problem Statement	Scope		
For the last 2 years, procurement time in our organization is 120 days for XYZ type of items/services.	Corporate services included Projects not included		
Goal Statement	Customer CTQ's		
Reduce procurement from 120 days to 90 days by Feb 2021.	Text		
Estimate Financial Opportunities / Intangible Benefits	High Level Project Milestone		
Reduce the procurement time. Ensures that we comply with the plan Ensures timely revenue	Define: 15 th Nov Measure: 15 th Dec Analyze: 5 th Jan Improve: 31 ^{sb} Jan Control: 15 th Feb		
Functional Manager/Process OwnerDate: Sponsor: Val	idation Date: Financial Analyst:: Date:		
Black/Green Belt: Date: Six Sigma Leader	Date: Other: Date:		

DMAIC Project Charter

Project No.:_

Project Name: Reduce Change-over Time For Oil Types	Core Process: Oil Refinery Process		
Resource Plan:	Team Members/Support Resources:		
Green Belt : Sponsor: Process Owner: Six Sigma Leader: Black Belt and Master Black Belt:	Text		
Problem Statement	Scope		
For the last one year, The Refinery Change-over Time is 6 hours, which reduces the productivity.	Oil refinery change over processes		
Goal Statement	Customer CTQ's		
Reduce change-over time from 6 hours to 2 hours by 30 th April, 2021.	Change-over Time		
Estimate Financial Opportunities / Intangible Benefits	High Level Project Milestone		
Productivity improvement ((XXXX SAR of additional revenue) Plan Adherence Enhanced OEE, Power saving, Utilities saving.	Define: 15 th Nov Measure: 15 th Dec Analyze: 5 th Jan Improve: 31 ^{sh} Jan Control: 15 th Feb		
Functional Manager/Process OwnerDate: Sponsor: Val	lidation Date: Financial Analyst:: Date:		
Black/Green Belt: Date: Six Sigma Leader	Date: Other: Date:		

Understanding and Mapping Processes

High-Level Process Mapping

SIPOC

SIPOC

www.anexas.net

SIPOC Example

Making a Photocopy

SIPOC

Understanding the Voice of the Customer

What Is the Voice of the Customer?

 The term Voice of the Customer (VOC) is used to describe customers' needs and their perceptions of your product or service

VOC Process

Outcomes

- A list of customers and customer segments
- Identification of relevant reactive and proactive sources of data
- Verbal (or numerical) data that identify customer needs
- Defined Critical to Quality characteristics
- Specifications for each CTQ

VOC Data Collection, Step 1

Step 1: Identify Customers and Determine What You Need to Know

Goal

- Identify your customers
- Decide what you need to know about their needs
- Decide when and how you will get this information

Identify Customers: Process

Project Worksheet: VOC Data Collection Plan

PROJECT:

	Who		What and Why	
	Customers and Segments		Indicate specifically what you want to know about your customers. Develop customized versions of the following questions, which you can ask during face-to- face interviews.	
			What's important to you?	
		What's a defect?		
			 How are we doing? How do we compare with our competitors? 	
			 What do you like? What don't you like? 	
	Sou	rces		
<i>Type an</i> X next to the data sources you think will be useful for this project.				
REACTI	VE SOURCES	PROAC	TIVE SOURCES	
	Complaints		Interviews	
	Problem or service hotlines		Focus groups	
	Technical support calls		Surveys	
	Customer service calls		Comment cards	
	Claims, credits		Sales visits/calls	
	Sales reporting		Direct observation	
	Product return information		Market research/monitoring	
	Warranty claims		Benchmarking	
	Web page activity		Quality scorecards	
	Other:		Other:	
	Summary: Which Ho	w Many	How and When	

On a separate sheet, summarize your plans to gather and use both reactive and proactive sources. Indicate how much data you will get, how you will get it, and when. Include, for instance, the number of interviews or surveys you plan to use, which customers you will contact, when you will start and end the data collection, and so on.

Who Are Your Customers?

- What are the outputs of your process? Who are the customers of that output?
- Are there particular groups of customers whose needs are especially important to your organization?

Identify Potential Customers

Identify whose interests are key and whose perspectives can add value:

- Current customers (buy your existing products)
- Former customers (stopped buying your products)
- Competitors' customers (buy alternative products)
- Lead thinkers and other experts
- Technology leaders in the industry
- Strategic partners
- Internal customers
- **Stakeholders** (internal and external)

Customer and Market Segmentation

- Often there is no single Voice of the Customer; different customers or types of customers usually have different needs and priorities
- You should include a wide variety of customers in your initial customer research efforts
- Different types of customers are often referred to as market segments

Common Market Segments

- Customer status: former customers, current customers, customers of competitors, substitute customers
- Where customers are in the "customer chain"
 - Internal user \rightarrow distributor \rightarrow end user
- Type of product or service customers buy from you
- Volume of purchases: high, medium, low
- Geography
- Reason for buying
- Industry, division, or department
- Demographics, such as gender or age

Do You Have Market Segments?

- If your customers seem to have similar needs across the board, you don't necessarily need to divide them into segments
- If you suspect that different groups will have significantly different needs and that these differences will influence how you structure your process, product, or service, then it will be worthwhile to think in terms of segments

Case Study: Receivables

- A company that sells both products and associated services is trying to improve its billing process and payment of accounts receivables
- A study of how long it takes customers to pay their bills shows the average at about 48 days, but many extend to 90 days or more

Receivables VOC Plan: Who

Who

Customers and Segments

Position in organization

Accounts payable vs. purchasing agents vs. end users

Type of business

Government and people who work with government vs. non-government vs. foreign vs. distributors

Type of payment

Credit card vs. purchase order vs. invoice vs. prepay by check

Payment history

On-time vs. late Organizations vs. individuals

Deciding the What and Why

- Revisit your charter: what is the purpose of your project?
- How does your purpose relate to customer needs?
- What do you need to know about the needs of the customers you've identified to make sure your project purpose is on track?

Receivables VOC Plan: What and Why

What and Why

Indicate specifically what you want to know about your customers. Develop customized versions of the following questions, which you can ask during interviews.

- What's important to you?
- What problems do you have with ____? (What's a defect?)
- How are we doing? How do we compare with our competitors?
- What do you like? What don't you like?

What are your invoice requirements?

For each requirement, follow up with: If we can't meet that requirement, what does that mean to you? (Try to determine which requirements are minor, which cause delayed payments, etc.)

How well do our processes and policies currently meet your requirements?

How do our processes and policies compare with other vendors?

What do you like about our invoicing processes and policies?

What don't you like?

What specific changes would you like to recommend?

Your Own VOC Plan: Who, What, and Why

Instructions:

- Use the SIPOC diagram you created to begin developing your own VOC plan
- Identify the customers of the output of your process
 - Think about what customer characteristics might help you separate them into relevant segments
- Identify key questions you have about each of the customer groups
- You may want to take notes on the portion of the worksheet reprinted below and then

transfer your final decisions to Project Worksheet: VOC Data Collection Plan

Time: 15 minutes

Anexas Consultancy Services

VOC Data Collection, Step 2

Step 2: Collect and Analyze Reactive and Proactive Data

Collect Needs Data: Process

Basic VOC Systems

1. Reactive systems

 Information comes to you whether or not you take action

2. Proactive systems

You need to put effort into gathering the information

Typical Reactive VOC Systems

- Customer complaints (phone or written)
- Technical support calls
- Claims, credits, contested payments
- Product return information
- Problem or service hotlines
- Customer service calls
- Sales reporting
- Warranty claims
- Webpage activity

Typical Reactive VOC Systems, cont.

Reactive systems generally gather data on:

- Current and former customers' issues or problems
- Current and former customers' unmet needs
- Current and former customers' interest in particular products or services

Proactive VOC Systems

- Direct customer observation
- Interviews
- Focus groups
- Surveys
- Comment cards
- Data gathering during sales visits or calls
- Market research, market monitoring
- Benchmarking

Analyze Existing Data

1. Collect and summarize existing data

 "Reactive" data will already be on hand, but will most likely need to be organized and summarized

2. Analyze these data using appropriate tools, e.g., Pareto charts and control charts

- Draw preliminary conclusions from relevant existing data
- 3. Determine which preliminary conclusions need to be validated with new customer research
 - Did we draw the right conclusions from our existing data?
- 4. Consider additional broad questions to understand customers' needs and extend thinking beyond existing products and services
 - What else do we need to learn?

Identify Proactive Data Needed

- After analyzing existing data, assess how much new information is needed
- Consider how to progress from where you are to where you need to be, based on
 - Level of certainty you can afford
 - Level of uncertainty you can risk

Face-to-Face Interaction

- Face-to-face interaction with customers can provide a wealth of data and knowledge that is unobtainable by other means
- A good first step in proactive data collection is customer observation
 - 1. Get them to show you, in detail, how they use your product or service (talk with them peer to peer, on-site)
 - 2. Ask "What are three things we could do to improve our product or service to you?" or, if time permits, conduct a lengthier interview
- Ideally, you should have face-to-face interviews prior to any other data collection or extensive phone interviews

Developing an Interview Guide

- If you are going to conduct interviews, compile questions into an interview guide
- Organize your questions
- Write a standard introduction for all interviewers to use
- Test the guide before using it with actual customers

Interview Flow

Guidelines for Conducting Interviews

- Be clear about the purpose of the interview
- Use open-ended, unbiased questions
- Ask simply worded questions
- Let the interviewee do most of the talking
- Listen actively

Sample Interview Questions

- 1. What is important to you about ______ ?(Name the output of your process, product, or service)
 - If the answer reveals more than one need, ask if some needs are more important than others
- 2. What problems do you have with our product/service? What impact does it have?
- 3. How are we performing in the areas you consider important?
- 4. What do you like about _____?
- 5. What can we improve about _____? What can we do to make your job easier?
- 6. What specific recommendations would you make to us?

In addition, if your customers are external to your organization, ask questions such as:

- 7. How do we compare relative to our competitors?
- 8. How easy is it to do business with us?

Open-Ended Questions

- The receivables team originally wrote, "Do our invoices meet your requirements?"—a question that asks for a yes or no answer
- The team reworded it as, "How well do our processes and policies meet your requirements? How do they not meet ...?"
- If the customer cannot articulate what is important to him or her, you may want to ask about:
 - Specific products/services by name
 - Sales support—knowledge and helpfulness of sales staff
 - Responsiveness
 - Ease of doing business
 - How use of your product/service has supported the customer's business goals

Receivables VOC Plan: Sources

Sources

Check the data sources you think will be useful for this project.

REACTIVE SOURCES	PROACTIVE SOURCES
X Complaints	Interviews
Problem or service hot lines	Focus groups
Technical support calls	Surveys
Customer service calls	Comment cards
💐 Claims, credits	Sales visits/calls
Sales reporting	Direct observation
Product return information	Market research/monitoring
Warranty claims	Benchmarking
Web page activity	Other <u>Customer contact calls</u>
Other	

VOC Plan: Final Touches

- The last step in developing your data collection plan is to decide specifically which customers you want to interview, how many you want to interview, how you will interview them, and within what time frame the interviews should take place
- If you have a large customer base, these decisions may not be easy; ask for help from your manager, sponsor, advisor, or marketing specialist

Summary: Which, How Many, How, and When

On the back of this form or a separate sheet, summarize your plans to gather and use both reactive and proactive sources. Indicate how much data you will get, how you will get it, and when. Include, for instance, the number of interviews or surveys you plan to use, which customers you will contact, when you will start and end the data collection, and so on.

Receivables VOC Plan: Summary

Summary: Which, How Many, How, and When

On the back of this form or a separate sheet, summarize your plans to gather and use both reactive and proactive sources. Indicate how much data you will get, how you will get it, and when. Include, for instance, the number of interviews or surveys you plan to use, which customers you will contact, when you will start and end the data collection, and so on.

- Will look at five segmentation characteristics. Try to do at least 20 face-to-face interviews first, then follow up phone interviews and/or surveys for additional data. Work with statistician to identify appropriate sample size needed from base of 5,000 customer organizations.
 - Carlos and LaShawn will pull together current reactive data we already have.
 - Tina will work on the bookstore angle.
 - Maury will work with customer service on adding info to customer contact calls.
- Work to begin this Friday and extend for three weeks. Deadline is July 26.

Your Own VOC Plan: Sources and Summary

Instructions:

- Check off each of the VOC data sources you think could provide you with information relevant to your project
 - Indicate which already exist and which you may need to create
 - You may not want or need to use all the sources listed, so it's OK to leave some items unchecked
- Complete your VOC plan by jotting down your preliminary thoughts about exactly how you will collect the VOC data
- You may want to take notes on the portion of the worksheet reprinted below and then transfer your final decisions to Project Worksheet: VOC Data Collection Plan
- Time: 15 minutes

Gathering the VOC Data

- Train everyone who will be gathering the VOC data
- Practice the interviews before talking with external customers
- Periodically monitor the data collection; make adjustments as necessary

Anexas Consultancy Services

VOC Data Collection, Step 3

Step 3: Analyzing Customer Data

Goal

- Generate a list of key customer needs in their language

- Much of the data you gathered in the previous steps will be verbal data
 - It is helpful to summarize this information in a meaningful way, perhaps by using an affinity diagram (described next)

Analyze Needs Data: Process

Affinity Diagram: Definition

An affinity diagram is a tool that organizes language data into related groups

Affinity Diagram Uses

- Help grasp very large or complex issues
- Encourage breakthrough thinking
- Find patterns in mountains of data
- Gather large amounts of language data
- Organize ideas, issues, and opinions

Example: Computerized Training, cont.

cost

Tips for Affinity Diagrams

- **Silent Process:** Move cards without talking
 - Encourages unconventional thinking
 - Discourages semantic battles
- **Gut Reaction:** React, do not contemplate
 - If you do not like where a card is, shift it
 - Settles eventually into consensus
 - Duplicate cards that keep shifting and put in both groups
- Avoid Pigeonholing: Groups emerge from "the chaos of the cards"
 - Do not sort cards into predetermined categories (pigeonholes)
 - Pigeonholes force-fit everything into existing logic
 - Pigeonholes prevent breakthrough from occurring
- **Group Size:** There can be a "group" of one card, but ask...
 - Should a small group be combined with another?
 - Should a large group be broken down more precisely?

Generating Customer Need Statements

- The need statements used for an affinity diagram should be in the customer's own language if at all possible
- To get these statements, read through interview notes, survey notes, comment cards, etc., and highlight any statements you think are relevant to your project
- Transcribe the strongest of these statements to cards or self-stick notes you can use for the affinity diagram

What You Can Learn: The Kano Model

Exercise: Using the Kano Model

Objective: Practice applying the Kano classifications to actual products and services

Instructions:

- Identify customer needs related to each of the products or services listed below and divide them based on the three Kano classifications
- Do the first example together with the whole group, then work on your own or in pairs
- Be prepared to discuss your answers with the whole group

Time: 10 minutes

	Must Be	More Is Better	Delighters
Television Set			

Anexas Consultancy Services

VOC Data Collection, Step 4

Step 4: Defining CTQs

- A useful CTQ will have the following characteristics
 - It is truly critical to the customer's perception of quality
 - It can be measured
 - A specification can be set by which to determine whether or not the CTQ has been achieved
- Shown in this section are two tools for translating the VOC into CTQs:
 - CTQ tree
 - Quality function deployment (QFD)

Identify and Prioritize CTQs: Process

Translating VOC into CTQs

(CTQ = Critical to Quality)

www.anexas.net

Example: CTQ Tree

114

Project Worksheet: Generating CTQs

Instructions:

- Use the blank tree diagram to translate a customer need from your affinity diagram into a CTQ requirement
- Be prepared to discuss your work with the whole group
- You can use the form reprinted here or the copy in the separate booklet of worksheets

Time: 15 minutes

What Is Quality Function Deployment?

- QFD (also called House of Quality) is a graphical tool summarizing information about customer requirements
- QFD is a good way to check the CTQs against customer requirements and use competitive data to help decide how to prioritize the CTQs

Anexas Consultancy Services

Quality Function Deployment (QFD)

What Is Quality Function Deployment?

- QFD (also called House of Quality) is a graphical tool summarizing information about customer requirements
- QFD is a good way to check the CTQs against customer requirements and use competitive data to help decide how to prioritize the CTQs

House of Quality

- Here we break the house into seven rooms
- Just like rooms in a house, there are connections and relationships among the rooms

(V) = Comes from VOC information(B) = Comes from benchmarking information(I) = Comes from internal expertise

Example: QFD—Lunch Preparation

			0	\mathcal{L}^{-}					
	CTQ]	Measure	es						
	Weight of Portion	% Nutrition Requirements	Met Blindfolded Jury Taste Test Rating	Ingredient Cost	Time to Prepare	Number of Ingredient Measurements	Number of Dishes Used	Solubility of Ingredients in Soap and Water	Importance of Needs
Fills Us Up	9	1	1						5.00
Is Nutritious	1	9		1					3.40
Tastes Good	0	0	9	1					3.30
Easy to Make				1	9	9			3.70
Easy to Clean Up							9	3	2.00
Sticks with Us	9			1					4.00
Does Not Cost Much	3			9					1.00
Does Not Make a Mess						3	9		2.30
Importance of CTQs	87	36	35	23	33	40	39	6	

Lunch Preparation—QFD Example

12

R 01

120

A: Summarize CTQs (in QFD) Room 1: Customer Requirements

- Room 1 lists the key customer needs identified by VOC research
- The needs are defined by customers and are in customer language
- The prioritization of needs is also done by customers

Example: M&S Inc.—"Easy Order Placement"— QFD Room 1

Customer Needs				Importance
I need to place orders when I want				4.30
I need to place orders from any location				3.90
I need to be able to place orders using different technologies				4.80
I want an easily understandable process				4.90
I don't want to go through many steps				4.70
I want to know immediately if an order is confirmed				4.20
I need to be able to get help if I have questions				4.00
ane How Important	.unoxuo.			

122

R 01

Room 3: Measures

- Room 3 lists the measures developed at the end of the VOC analysis
- The ideas for measures came from:
 - The design team's work translating customer needs into CTQs (which include measures)
 - Benchmarking information on how similar characteristics are measured
 - Measures currently being used for similar designs

Example: M&S Inc.—"Easy Order Placement"— QFD Room 3

	Customer Needs	% of customer-desired technologies supported	# of hours help facility is available	# of process steps	% information about completed order status accessible by customer	% historical information not requiring reentry	# of hours access is available	Importance
	I need to place orders when I want							4.30
	I need to place orders from any location							3.90
	I need to be able to place orders using different technologies							4.80
	I want an easily understandable process							4.90
	I don't want to go through many steps							4.70
	I want to know immediately if an order is confirmed							4.20
	I need to be able to get help if I have questions							4.00
ane	How Important	10.						

124

B: Prioritize CTQs (with QFD) Room 4: Relationships

- Room 4 summarizes the relationship between potential measures and the customers' needs
- To determine the relationship, compare each measure with each need and ask:

"If the design meets the target set for this measure, to what extent will the customer need be met?"

Example: M&S Inc.—"Easy Order Placement"— QFD Room 4

	Customer Needs	% of customer-desired technologies supported	# of hours help facility is available	# of process steps	% information about completed order status accessible by customer	% historical information not requiring reentry	# of hours access is available	Importance
	I need to place orders when I want	3	3				9	4.30
	I need to place orders from any location	3						3.90
	I need to be able to place orders using different technologies	9						4.80
	I want an easily understandable process			3		3		4.90
	I don't want to go through many steps			9		9		4.70
	I want to know immediately if an order is confirmed				9			4.20
	I need to be able to get help if I have questions		9		3		3	4.00
ane	How Important	68	49	57	50	57	51	
consult	an c y SE							

126

R 01

Room 2: Competitive Comparison

- Room 2 graphically shows how customers perceive your organization compared with competitors with regard to meeting the customer needs listed in Room 1
- Your organization and at least two competitors are compared against customer needs
- The information used in the comparison can come from VOC research and from benchmarking studies

Example: M&S Inc.—"Easy Order Placement"— QFD Room 2

	\wedge	
ſ		
╞		
ł		

Relationship Matrix Key: Image: Strong Image: Moderate Image: Weak Weight 9 3 1 Customer Needs	% of customer-desired technologies supported	# of hours help facility is available	# of process steps	% information about completed order status accessible by customer	% historical information not requiring reentry	# of hours access is available	Importance	$Key:$ $\bigcup_{Us} O Comp A Comp B$ $Competition Comparison$ $1 2 3 4 5$
I need to place orders when I want	3	3				9	4.30	
I need to place orders from any location	3						3.90	\rightarrow
I need to be able to place orders using different technologies	9						4.80	$\phi \phi$
l want an easily understandable process			3		3		4.90	
I don't want to go through many steps			9		9		4.70	
I want to know immediately if an order is confirmed				9			4.20	
I need to be able to get help if I have questions		9		3		3	4.00	\rightarrow

Room 5: Technical Evaluation

 Room 5 summarizes technical benchmarking data on how your company compares with competitors with respect to performance on key measures/design requirements

Example: M&S Inc.—"Easy Order Placement"— QFD Room 5

Room 6: Targets

- Room 6 summarizes the targets established for the measures/ design requirements
- Targets were established in the VOC analysis where the team identified the level of performance required to meet customer needs

Example: Order Processing— QFD Room 6

CTQ's/ Measures	% of customer-desired technologies supported	# of hours help facility is available	# of process steps	% information about completed order status accessible by customer	% historical information not requiring reentry	# of hours access is available	Importance
I need to place orders when I want	3	3				9	4.30
I need to place order from any location	3						3.90
I need to be able to place orders using different technologies	9						4.80
l want an easily understandable process			3		3		4.90
l don't want to go through many steps			9		9		4.70
I want to know immediately if an order is confirmed				9			4.20
I need to be able to get help if I have questions		9		3		3	4.00
How Important	68	49	57	50	57	51	
Target	100	24	4	75	90	24	

Room 7: Correlation

- In Room 7, relationships between measures (the "roof") are summarized
- Use symbols to represent relationships
- Evaluate the outcome
 - Positive relationships indicate synergy
 - Negative relationships may indicate conflicts
- Key question: If we design to meet CTQ1, to what extent do we satisfy CTQ2?

Example: M&S Inc.—"Easy Order Placement"— QFD Room 7

Example: M&S Inc.—"Easy Order Placement"— Completed HOQ

Example: M&S Inc.—"Easy Order Placement"— QFD Output

Order placement: first-level need

CTQ Measures	Importance	Target	Upper Spec Limit	Lower Spec Limit
% of customer-desired technologies supported	68	100	N/A	75
# of hours help facility is available	49	24	N/A	21
# of process steps	57	4	6	2
% information about completed order status accessible by customer	50	75	N/A	60
% historical information not requiring reentry	57	90	N/A	75
# of hours access is available	51	24	N/A	21

QFD Template

R 01 137

Selecting CTQs to Focus On

- Which will have the greatest positive impact on the customer?
- Which are within your scope or process area of focus?
- Which of the Kano Must Be characteristics are not addressed?

Anexas Consultancy Services

VOC Data Collection, Step 5

Step 5: Setting Specifications

Specifications for CTQs

- In manufacturing, specification limits often come from technical or mechanical requirements
- Otherwise, base specification limits on data about customer needs
- Set specifications at the places where customer satisfaction starts to fall off appreciably

Exercise: Setting Specifications

Objective: Practice establishing specification limits that relate to customer requirements

Instructions:

- The sample CTQ tree shown earlier is reprinted below
- Select at least one CTQ for each driver and use the space on the next page to indicate how you would go about setting specifications limits for it
- Be prepared to discuss your answers with the whole group
 Time: 10 minutes

8	Exercise: Worksheet								
	CTQ	Potential Specification Method							
	Answers are correct								
	Reps can answer question								
	Information returned quickly								
	Customer greeted by name								
	Customer not interrupted								
	Time on hold								
	Transfers immediate								

Summary: The Five-Step VOC Data Collection Process

By following this process, we can help ensure that we have understood the current situation from the customer's perspective

Revisiting Your Charter

- Do you still think customers would consider the project a high priority?
 - If not, can you modify your focus to make it more relevant to customer needs?
 - If you can't answer the question, what additional information can you collect to determine how the customer might perceive your project?
- Do you have enough data to justify working on this project?
 - If not, can you get timely information so you can keep your project moving forward?
 - Do you need to modify your timeline to include some customer research up front? Whose approval would you need to make that adjustment?

Anexas Consultancy Services

DEFINE: Define the Project

Review

You Were Here

www.anexas.net

DEFINE Phase Deliverables

- Product or process linked to strategic business requirements
- Clear problem and goal statements, and business benefits
- High-level financial benefits approved by finance analyst
- High-level process map of major process steps (SIPOC)
- Customer critical to quality (CTQ) requirements
- Linkage of customer requirements to process outputs

DEFINE Phase Deliverables, cont.

- Project plan with milestones and deliverables
- Stakeholder identification and analysis
- Completed and signed-off project charter
- DEFINE section of storyboard completed
- DEFINE phase discussed and agreed on with sponsor and coach
- DEFINE deliverables completed and phase approved

Anexas Consultancy Services

MEASURE: Measure the Current Situation

Overview

You Are Here — MEASURE

www.anexas.net

MEASURE: Measure the Current Situation

Goal

 Focus the improvement effort by gathering information on the current situation

Output

- Data that pinpoints problem location or occurrence
- Baseline data on how well the process meets customer needs (to determine current process sigma)
- Understanding of how current process operates
- A more focused problem statement

Approach to MEASURE

- Data methods and process mapping often occur in parallel in the MEASURE step
- Mapping the process may give insight into what data to collect and where
- Collecting and plotting the data may show which process areas need to be mapped in more detail

Preview of MEASURE Modules

- A factual understanding of MEASURE means your knowledge is based on data—which means you have to know what data to collect, what to do with them, and how to interpret the patterns or clues you uncover
- The modules we'll cover will help you:
 - Understand the various types of data and how to collect appropriate data (Data Collection)
 - Identify patterns related to variation over time (Data Analysis I: Identifying Patterns over Time)

Preview of MEASURE Modules, cont.

- The modules we'll cover will help you: (cont.)
 - Identify other kinds of patterns in data (Data Analysis II: Looking for Patterns Not Related to Time)
 - Define your baseline process sigma level (Determining Process Sigma)*
 - Identify waste in the way the process is organized (Process Analysis)

Anexas Consultancy Services

Basic Statistics Theory

Anexas Consultancy Services

The Normal Distribution

Data and Statistics

- Data is the way we measure process performance
- Two main types of data
 - Continuous-measured
 - Example: Temperature
 - Discrete—categorized and counted
 - Example: Acceptable yes or no
- Continuous data are often treated as if they represented a sample from a distribution
- As shown, distribution is represented by a curve that shows all the possible values of the data and their relative frequency

Normal Distribution

Equations for Mean and Standard Deviation

Calculating Mean and Standard Deviation

Anexas Consultancy Services

Areas Under Normal Curves

Normal Curve Probabilities

What's the probability that a caller will wait less than 600 seconds?

www.anexas.net

Converting to Standard Normal

Z Table

Z Decimal

		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	4	0.000032	0.000021	0.000013	0.000009	0.000005	0.000003	0.000002	0.000001	0.000001	0.000000
	3	0.001350	0.000968	0.000687	0.000483	0.000337	0.000233	0.000159	0.000108	0.000072	0.000048
L.	2	0.022750	0.017864	0.013903	0.010724	0.008198	0.006210	0.004661	0.003467	0.002555	0.001866
be	1	0.158655	0.135666	0.115070	0.096801	0.080757	0.066807	0.054799	0.044565	0.035930	0.028716
luπ	0	0.500000	0.460172	0.420740	0.382089	0.344578	0.308538	0.274253	0.241964	0.211855	0.184060
∠ a	0	0.500000	0.539828	0.579260	0.617911	0.655422	0.691462	0.725747	0.758036	0.788145	0.815940
	1	0.841345	0.864334	0.884930	0.903199	0.919243	0.933193	0.945201	0.955435	0.964070	0.971284
\geq	2	0.977250	0.982136	0.986097	0.989276	0.991802	0.993790	0.995339	0.996533	0.997445	0.998134
N	3	0.998650	0.999032	0.999313	0.999517	0.999663	0.999767	0.999841	0.999892	0.999928	0.999952
	4	0.999968	0.999979	0.999987	0.999991	0.999995	0.999997	0.999998	0.999999	0.999999	1.000000

R 01 165

Discussion: Is Something Fishy?

- You manage the shipping department for a manufacturer of medical devices
- You get a charge for \$642 for expedited parts that you think usually comes in closer to \$500
- You obtain 250 recent charges for that same item to make comparisons
- You want to know if there is something fishy about this charge or if it is within the usual range for that item
- How can you use the data to answer the question?

Discussion Answers: Is Something Fishy?

Option 1: Create a control chart of the data

 Use a control chart of claims amounts to see if the fishy charge is outside the limits

Option 2: Apply Normal theory

- Use Normal theory, a body of statistics built around the properties of the Normal distribution
- See where the fishy value falls in the distribution of these data

Recap: The Normal Curve

Definition

- A probability distribution in which the most frequently occurring value is in the middle and other probabilities tail off symmetrically in both directions
 - This shape is sometimes called a **bell shaped curve**

Overview: Using Normal Theory to Answer "Fishy" Questions

1. Make a histogram to see if (continuous) data are Normal

2. Get the mean and standard deviation of data

Overview: Using Normal Theory to Answer "Fishy" Questions, cont.

3. Draw Normal curve for data

4. Compare the value of interest (\$642) with the Normal curve

Overview: Using Normal Theory to Answer "Fishy" Questions, cont.

5. How many standard deviations away from the mean is the value of interest?

Overview: Using Normal Theory to Answer "Fishy" Questions, cont.

6. Look up the probability of a claim being that value or higher in the Normal table of z values

7. If probability is low, something is probably fishy

"Low" usually means < 0.05

www.anexas.net

Drawing Normal Curves

Drawing Normal Curves, cont.

Z value: Same as a "Standard" Normal Value

Z value

How many standard deviations is the value of interest away from the mean?

$$Z = \frac{(value - of - interest) - \overline{X}}{S}$$

Claims example

How many standard deviations is \$642 away from \$500? (Or "What is the Z value for 642?")

$$Z = \frac{642 - 500}{50} = \frac{142}{50} = 2.84$$

Probabilities of z values

- Area under the standard Normal curve = probability
- What is the probability a Z value will be ≥ zero?

 What is the probability a Z value will be ≥ 2.84?

Normal Tables: Looking up Probabilities

Two types of tables

1. Reports area \geq (to the right of) the value of interest

	Standard Normal Table																	
a	Area	Z	Area	Z	Area	Z	Area	Z	Area	Z	Area	Z	Area	Z	Area	Z	Area	z
001	0.000001	4.80	0.000013	4.20	0.000159	3.60	0.001350	3.00	0.008198	2.40	0.035930	1.80	0.115070	1.20	0.274253	0.60	0.500000	0.00
001	0.000001	4.81	0.000013	4.21	0.000153	3.61	0.001306	3.01	0.007976	2.41	0.035148	1.81	0.113139	1.21	0.270931	0.61	0.496011	0.01
001	0.000001	4.82	0.000012	4.22	0.000147	3.62	0.001264	3.02	0.007760	2.42	0.034380	1.82	0.111232	1.22	0.267629	0.62	0.492022	0.02
⁰⁰¹ A larger	0.000001	4.83	0.000012	4.23	0.000142	3.63	0.001223	3.03	0.007549	2.43	0.033625	1.83	0.109349	1.23	0.264347	0.63	0.488034	0.03
⁰⁰¹ Version of	0.000001	4.84	0.000011	4.24	0.000136	3.64	0.001183	3.04	0.007344	2.44	0.032884	1.84	0.107488	1.24	0.261086	0.64	0.484047	0.04
	0.000001	4.85	0.000011	4.25	0.000131	3.65	0.001144	3.05	0.007143	2.45	0.032157	1.85	0.105650	1.25	0.257846	0.65	0.480061	0.05
1001 this table	0.000001	4.86	0.000010	4.26	0.000126	3.66	0.001107	3.06	0.006947	2.46	0.031443	1.86	0.103835	1.26	0.254627	0.66	0.476078	0.06
is on the	0.000001	4.87	0.000010	4.27	0.000121	3.67	0.001070	3.07	0.006756	2.47	0.030742	1.87	0.102042	1.27	0.251429	0.67	0.472097	0.07
	0.000001	4.88	0.000009	4.28	0.000117	3.68	0.001035	3.08	0.006569	2.48	0.030054	1.88	0.100273	1.28	0.248252	0.68	0.468119	0.08
next page	0.000001	4.89	0.000009	4.29	0.000112	3.69	0.001001	3.09	0.006387	2.49	0.029379	1.89	0.098525	1.29	0.245097	0.69	0.464144	0.09
000	0.000000	4.90	0.000009	4.30	0.000108	3.70	0.000968	3.10	0.006210	2.50	0.028717	1.90	0.096800	1.30	0.241964	0.70	0.460172	0.10
000	0.000000	4.91	0.000008	4.31	0.000104	3.71	0.000935	3.11	0.006037	2.51	0.028067	1.91	0.095098	1.31	0.238852	0.71	0.456205	0.11
000	0.000000	4.92	0.000008	4.32	0.000100	3.72	0.000904	3.12	0.005868	2.52	0.027429	1.92	0.093418	1.32	0.235763	0.72	0.452242	0.12
000	0.000000	4.93	0.000007	4.33	0.000096	3.73	0.000874	3.13	0.005703	2.53	0.026803	1.93	0.091759	1.33	0.232695	0.73	0.448283	0.13
0000	0.000000	4.94	0.000007	4.34	0.000092	3.74	0.000845	3.14	0.005543	2.54	0.026190	1.94	0.090123	1.34	0.229650	0.74	0.444330	0.14
000	0.000000	4.95	0.000007	4.35	0.000088	3.75	0.000816	3.15	0.005386	2.55	0.025588	1.95	0.088508	1.35	0.226627	0.75	0.440382	0.15

Standard Normal Table

anexas

consultancy <mark>SE</mark>

Standard Normal Table																	
z	Area	z	Area	z	Area	z	Area	z	Area	z	Area	z	Area	z	Area	z	Area
0.00	0.500000	0.60	0.274253	1.20	0.115070	1.80	0.035930	2.40	0.008198	3.00	0.001350	3.60	0.000159	4.20	0.000013	4.80	0.000001
0.01	0.496011	0.61	0.270931	1.21	0.113139	1.81	0.035148	2.41	0.007976	3.01	0.001306	3.61	0.000153	4.21	0.000013	4.81	0.000001
0.02	0.492022	0.62	0.267629	1.22	0.111232	1.82	0.034380	2.42	0.007760	3.02	0.001264	3.62	0.000147	4.22	0.000012	4.82	0.000001
0.03	0.488034	0.63	0.264347	1.23	0.109349	1.83	0.033625	2.43	0.007549	3.03	0.001223	3.63	0.000142	4.23	0.000012	4.83	0.000001
0.04	0.484047	0.64	0.261086	1.24	0.107488	1.84	0.032884	2.44	0.007344	3.04	0.001183	3.64	0.000136	4.24	0.000011	4.84	0.000001
0.05	0.480061	0.65	0.257846	1.25	0.105650	1.85	0.032157	2.45	0.007143	3.05	0.001144	3.65	0.000131	4.25	0.000011	4.85	0.000001
0.06	0.476078	0.66	0.254627	1.26	0.103835	1.86	0.031443	2.46	0.006947	3.06	0.001107	3.66	0.000126	4.26	0.000010	4.86	0.000001
0.07	0.472097	0.67	0.251429	1.27	0.102042	1.87	0.030742	2.47	0.006756	3.07	0.001070	3.67	0.000121	4.27	0.000010	4.87	0.000001
0.08	0.468119	0.68	0.248252	1.28	0.100273	1.88	0.030054	2.48	0.006569	3.08	0.001035	3.68	0.000117	4.28	0.000009	4.88	0.000001
0.09	0.464144	0.69	0.245097	1.29	0.098525	1.89	0.029379	2.49	0.006387	3.09	0.001001	3.69	0.000112	4.29	0.000009	4.89	0.000001
0.10	0.460172	0.70	0.241964	1.30	0.096800	1.90	0.028717	2.50	0.006210	3.10	0.000968	3.70	0.000108	4.30	0.000009	4.90	0.000000
0.11	0.456205	0.71	0.238852	1.31	0.095098	1.91	0.028067	2.51	0.006037	3.11	0.000935	3.71	0.000104	4.31	0.000008	4.91	0.000000
0.12	0.452242	0.72	0.235763	1.32	0.093418	1.92	0.027429	2.52	0.005868	3.12	0.000904	3.72	0.000100	4.32	0.000008	4.92	0.000000
0.13	0.448283	0.73	0.232695	1.33	0.091759	1.93	0.026803	2.53	0.005703	3.13	0.000874	3.73	0.000096	4.33	0.000007	4.93	0.000000
0.14	0.444330	0.74	0.229650	1.34	0.090123	1.94	0.026190	2.54	0.005543	3.14	0.000845	3.74	0.000092	4.34	0.000007	4.94	0.000000
0.15	0.440382	0.75	0.226627	1.35	0.088508	1.95	0.025588	2.55	0.005386	3.15	0.000816	3.75	0.000088	4.35	0.000007	4.95	0.000000
0.16	0.436441	0.76	0.223627	1.36	0.086915	1.96	0.024998	2.56	0.005234	3.16	0.000789	3.76	0.000085	4.36	0.000007		
0.17	0.432505	0.77	0.220650	1.37	0.085343	1.97	0.024419	2.57	0.005085	3.17	0.000762	3.77	0.000082	4.37	0.000006		
0.18	0.428576	0.78	0.217695	1.38	0.083793	1.98	0.023852	2.58	0.004940	3.18	0.000736	3.78	0.000078	4.38	0.000006		
0.19	0.424655	0.79	0.214764	1.39	0.082264	1.99	0.023295	2.59	0.004799	3.19	0.000711	3.79	0.000075	4.39	0.000006		
0.20	0.420740	0.80	0.211855	1.40	0.080757	2.00	0.022750	2.60	0.004661	3.20	0.000687	3.80	0.000072	4.40	0.000005		
0.21	0.416834	0.81	0.208970	1.41	0.079270	2.01	0.022216	2.61	0.004527	3.21	0.000664	3.81	0.000069	4.41	0.000005		
0.22	0.412936	0.82	0.206108	1.42	0.077804	2.02	0.021692	2.62	0.004396	3.22	0.000641	3.82	0.000067	4.42	0.000005		
0.23	0.409046	0.83	0.203269	1.43	0.076359	2.03	0.021178	2.63	0.004269	3.23	0.000619	3.83	0.000064	4.43	0.000005		
0.24	0.405165	0.84	0.200454	1.44	0.074934	2.04	0.020675	2.64	0.004145	3.24	0.000598	3.84	0.000062	4.44	0.000004		
0.25	0.401294	0.85	0.197663	1.45	0.073529	2.05	0.020182	2.65	0.004025	3.25	0.000577	3.85	0.000059	4.45	0.000004		
0.26	0.397432	0.86	0.194895	1.46	0.072145	2.06	0.019699	2.66	0.003907	3.26	0.000557	3.86	0.000057	4.46	0.000004		
0.27	0.393580	0.87	0.192150	1.47	0.070781	2.07	0.019226	2.67	0.003793	3.27	0.000538	3.87	0.000054	4.47	0.000004		
0.28	0.389739	0.88	0.189430	1.48	0.069437	2.08	0.018763	2.68	0.003681	3.28	0.000519	3.88	0.000052	4.48	0.000004		
0.29	0.385908	0.89	0.186733	1.49	0.068112	2.09	0.018309	2.69	0.003573	3.29	0.000501	3.89	0.000050	4.49	0.000004		
0.30	0.382089	0.90	0.184060	1.50	0.066807	2.10	0.017864	2.70	0.003467	3.30	0.000483	3.90	0.000048	4.50	0.000003		
0.31	0.378280	0.91	0.181411	1.51	0.065522	2.11	0.017429	2.71	0.003364	3.31	0.000466	3.91	0.000046	4.51	0.000003		
0.32	0.374484	0.92	0.178786	1.52	0.064255	2.12	0.017003	2.72	0.003264	3.32	0.000450	3.92	0.000044	4.52	0.000003		
0.33	0.370700	0.93	0.176186	1.53	0.063008	2.13	0.016586	2.73	0.003167	3.33	0.000434	3.93	0.000042	4.53	0.000003		
0.34	0.366928	0.94	0.173609	1.54	0.061780	2.14	0.016177	2.74	0.003072	3.34	0.000419	3.94	0.000041	4.54	0.000003		
0.35	0.363169	0.95	0.171056	1.55	0.060571	2.15	0.015778	2.75	0.002980	3.35	0.000404	3.95	0.000039	4.55	0.000003		
0.36	0.359424	0.96	0.168528	1.56	0.059380	2.16	0.015386	2.76	0.002890	3.36	0.000390	3.96	0.000037	4.56	0.000003		
0.37	0.355691	0.97	0.166023	1.57	0.058208	2.17	0.015003	2.77	0.002803	3.37	0.000376	3.97	0.000036	4.57	0.000002		
0.38	0.351973	0.98	0.163543	1.58	0.057053	2.18	0.014629	2.78	0.002718	3.38	0.000362	3.98	0.000034	4.58	0.000002		
0.39	0.348268	0.99	0.161087	1.59	0.055917	2.19	0.014262	2.79	0.002635	3.39	0.000349	3.99	0.000033	4.59	0.000002		
0.40	0.344578	1.00	0.158655	1.60	0.054799	2.20	0.013903	2.80	0.002555	3.40	0.000337	4.00	0.000032	4.60	0.000002		
0.41	0.340903	1.01	0.156248	1.61	0.053699	2.21	0.013553	2.81	0.002477	3.41	0.000325	4.01	0.000030	4.61	0.000002		
0.42	0.337243	1.02	0.153864	1.62	0.052616	2.22	0.013209	2.82	0.002401	3.42	0.000313	4.02	0.000029	4.62	0.000002		
0.43	0.333598	1.03	0.151505	1.63	0.051551	2.23	0.012874	2.83	0.002327	3.43	0.000302	4.03	0.000028	4.63	0.000002		
0.44	0.329969	1.04	0.149170	1.64	0.050503	2.24	0.012545	2.84	0.002256	3.44	0.000291	4.04	0.000027	4.64	0.000002		
0.45	0.326355	1.05	0 146859	1 65	0 049471	2 25	0.012224	2.85	0.002186	3 45	0.000280	4 05	0.000026	4 65	0.000002		
0.46	0.322758	1.06	0 144572	1 66	0.048457	2.26	0.011911	2.86	0.002118	3.46	0.000270	4 06	0.000025	4 66	0.000002		
0.47	0.319178	1.07	0 142310	1 67	0.047460	2 27	0.011604	2.87	0.002052	3.47	0.000260	4 07	0.000024	4 67	0.000002		
0.48	0 315614	1.08	0 140071	1.68	0.046479	2.28	0.011304	2.88	0.001988	3.48	0.000251	4.08	0.000023	4 68	0.000001		
0.49	0.312067	1.09	0.137857	1.69	0.045514	2.29	0.011011	2.89	0.001926	3,49	0.000242	4.09	0.000022	4.69	0.000001		
0.50	0.308538	1 10	0 135666	1 70	0.044565	2 30	0.010724	2.90	0.001866	3.50	0.000233	4 10	0.000021	4 70	0.000001		
0.51	0.305026	1 11	0.133500	1 71	0.043633	2 31	0.010444	2.00	0.001807	3.51	0.0002233	4 11	0.000021	4.70	0.000001		
0.52	0.301532	1 12	0 131357	1 79	0.042716	2.31	0.010170	2.01	0.001750	3.51	0.000224	4 12	0.000020	4 72	0.000001		
0.52	0.202052	1.12	0.120239	1.72	0.041916	2.32	0.000000	2.02	0.001605	3.52	0.000210	4.12	0.000019	4.12	0.000001		
0.54	0.204500	1 14	0.127142	1.73	0.040020	2.33	0.000642	2.33	0.001641	3.53	0.000200	4.13	0.000010	4.73	0.000001		
0.54	0.294099	1.14	0.12/143	1.74	0.040930	2.34	0.009042	2.94	0.001590	3.04	0.000200	4.14 4.1F	0.000017	4.74	0.000001		
0.00	0.291100	1.10	0.120072	1.75	0.030304	2.30	0.009367	2.30	0.001589	3.00	0.000193	4.15	0.000017	4.75	0.000001		
0.00	0.287740	1.16	0.123024	1.76	0.039204	2.36	0.009137	2.90	0.001400	3.56	0.000175	4.16	0.000016	4.76	0.000001		<u> </u>
0.5/	0.284339	1.17	0.121000	1.77	0.035364	2.37	0.008650	2.97	0.001469	3.57	0.000170	4.17	0.000015	4.77	0.000001		
0.55	0.28095/	1.18	0.119000	1.78	0.03/538	2.38	0.008006	2.98	0.001441	3.58	0.000172	4.18	0.000015	4.78	0.000001		
U.59	0.277595	1.19	0.11/023	1.79	0.036727	2.39	0.008424	2.99	0.001395	3.59	0.000165	4.19	0.000014	4.79	0.000001		

R 01 178

Anexas Consultancy Services

Looking Up Probabilities

P values Are Probabilities for Values of Interest

P value =

- Tail area
- Area under curve beyond value of interest
- Probability of being at the value of interest or beyond

- A small P value (0 to 0.05) means:
 - The probability is small that the value of interest did, indeed, come from that distribution; it is likely to have come from some other distribution
 - Something's fishy!

P values Are Probabilities for Values of Interest, cont.

Claims example

- Charge of interest = \$642
- Z value = 2.84
- P value = 0.0023 (very small)

Conclusion

- The likelihood is small that the charge of \$642 came from the same distribution as the other charges
- Something's probably fishy; investigate the charge further

Exercise: Using Normal Theory and P values

- You receive another charge of \$970 for a different item
- Find its P value given that 250 recent charges of the same type are roughly Normal with an average of \$800 and a standard deviation of \$200
 - Are the data Normal (and continuous)?
 - Get mean and standard deviation of the data
 - Label the Normal curve for these data

Mark on the curve where the value of interest falls in the distribution

Exercise: Using Normal Theory and P values, cont.

 How many standard deviations is the value of interest from the mean? (What is the Z value?)

$$Z = \frac{(\text{value-of-interest}) - \overline{X}}{S} =$$

 Look up the probability of the claim being that Z value or beyond in the Standard Normal table

P value =

• P value means:

Will you investigate the claim or not?

Answer: Using Normal Theory and P values

It is likely enough that \$970 came from the same distribution as the other charges

Do not investigate; pay the charge

Conclusion

Anexas Consultancy Services

Combining Distributions

Part 1: Adding Distributions

www.anexas.net

How to Add Normal Distributions

Means are additive Are standard deviations additive?

- $\overline{X}_{A+B} = \overline{X}_{A} + \overline{X}_{B} \qquad S_{A+B} = S_{A} + S_{B}$ = 3 + 7 $= 10 \qquad \text{NO! Incorrect}$
- When you add two variables, the variation increases, but by how much?
- The combined distribution will be wider than either curve alone

Variances Are Additive; Standard Deviations Are Not

- A standard deviation is the typical amount an observation varies from the mean
- Standard deviations are derived from a statistical term called variance

St. Dev. = $\sqrt{Variance}$

- Variances are additive, but standard deviations are not
- To combine two standard deviations, square each to get the variances, add the variances, and then take a square root of the combined variance

Variances Are Additive; Standard Deviations Are Not, cont.

Process Time Example

To add distributions:

- Add means to get new mean
- Add variances and then take square root to get standard deviation of combined distribution

$$S_{A+B} = \sqrt{S_A^2 + S_B^2} = \sqrt{(1)^2 + (2)^2} = \sqrt{5} = 2.23$$

$$\neq 1+2=3$$
Incorrect; do not add standard deviation

Variances Are Additive; Standard Deviations Are Not, cont.

190

Part 2: Subtracting Distributions

Standard Deviation

How to Subtract Normal Distributions

For differences, subtract means, but add variances

- It may seem counterintuitive at first, but any time you combine distributions, variation always increases
- So even when you subtract means, you add variances

Mean
$$\overline{X}_{A+B} = \overline{X}_{A} + \overline{X}_{B}$$

Variance $S_{A-B}^{2} = S_{A}^{2} + S_{B}^{2}$

$$S_{A-B} = \sqrt{S_{A}^2 + S_{B}^2}$$

Example: Subtracting Distributions

Process Time Example

$$\overline{X}_{A-B} = \overline{X}_A - \overline{X}_B = 3 - 7 = -4$$

It's negative because the process time for Line A is on average 4 minutes shorter than the process time for Line B.

$$S_{A-B} = \sqrt{S_A^2 + S_B^2} = \sqrt{(1)^2 + (2)^2} = \sqrt{5} = 2.23$$
 Correct
 $\neq 1 - 2 = -1$
Incorrect

Example: Subtracting Distributions, cont.

Additivity of Variances

- 1. Adding distributions to get a total
- 2. Subtracting distributions to get a difference

$$\overline{\mathbf{X}}_{A+B} = \overline{\mathbf{X}}_{A} + \overline{\mathbf{X}}_{B}$$

$$\overline{\mathbf{X}}_{A+B} = \overline{\mathbf{X}}_{A} + \overline{\mathbf{X}}_{B}$$

$$S_{A+B}^{2} = S_{A}^{2} + S_{B}^{2}$$

$$S_{A+B} = \sqrt{S_{A}^{2} + S_{B}^{2}}$$

$$Same$$

$$S_{A-B}^{2} = \sqrt{S_{A}^{2} + S_{B}^{2}}$$

$$S_{A-B} = \sqrt{S_{A}^{2} + S_{B}^{2}}$$

When adding or subtracting distributions, the procedure is the same for getting a standard deviation

- Add variances
- Take a square root

Anexas Consultancy Services

Central Limit Theorem and Confidence Intervals

The Central Limit Theorem, Part 1

- The Central Limit Theorem is an important statistical concept that applies to a large number of statistical tools within the Six Sigma Body of Knowledge
- Understanding it is indispensable to interpreting results of various statistical tools (e.g., regression analysis or hypothesis testing)
- We will use Minitab to generate "random" data to illustrate how the Central Limit Theorem works
- Part 1 of the Central Limit Theorem says the standard deviation of averages is less than the standard deviation of individual observations by a factor of $\frac{1}{\sqrt{2}}$

The Central Limit Theorem, Part 1

Open a blank Minitab worksheet

 Have Minitab generate random normal data as shown below:

199

Dutput: your	-	C1	C2	C3	C4	C5	C6	C7	C8	C9
numbers will	1	83.6550	79.5600	78.4506	82.2106	75.9103	76.6537	79.4996	74.8787	78.4519
pe different	2	79.8536	79.8202	77.4575	87.0574	75.8258	81.7003	83.0624	78.5713	81.157
	3	84.9487	87.0001	74.2243	78.3876	78.7760	76.1865	84.8863	78.4661	81.9700
	4	81.1384	78.7630	80.6872	86.3217	79.0401	80.3601	83.0348	84.7032	79.049
	5	79.4711	79.5336	79.8951	83.2326	82.3533	83.3356	78.7162	87.2212	72.862

1	C1	C2	C I	C4	C5	C6	C7	C8	60	10
	X1	X2	X3	X4	X5	X6	X7	X8	X9	Mean
1	83.6550	79.5600	78.4506	82.2106	75.9103	76.6537	79.4996	74.8787	78.4519	
2	79.8536	79.8202	77.4575	87.0574	75.8258	81.7003	83.0624	78.5713	81.1571	
3	84.9487	87.0001	74.2243	78.3876	78.7760	76.1865	84.8863	78.4661	81.9700	
4	81.1384	78.7630	80.6872	86.3217	79.0401	80.3601	83.0348	84.7032	79.0495	
5	79.4711	79.5336	79.8951	83.2326	82.3533	83.3356	78.7162	87.2212	72.8625	
-	04.5007	01.0000								

From the main menu, click on Calc > Row Statistics

201

put	out: your numbers will be different											
Wa	Worksheet 1 ***											
+	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10		
	X1	X2	X3	X4	X5	X6	X7	X8	X9	Mean		
1	83.6550	79.5600	78.4506	82.2106	75.9103	76.6537	79.4996	74.8787	78.4519	78.807		
2	79.8536	79.8202	77.4575	87.0574	75.8258	81.7003	83.0624	78.5713	81.1571	80.500		
3	84.9487	87.0001	74.2243	78.3876	78.7760	76.1865	84.8863	78.4661	81.9700	80.538		
4	81.1384	78.7630	80.6872	86.3217	79.0401	80.3601	83.0348	84.7032	79.0495	81.455		
5	79.4711	79.5336	79.8951	83.2326	82.3533	83.3356	78.7162	87.2212	72.8625	80.735		
6	81.5827	81.9029	83.6519	77.9239	81.5689	76.1915	78.4964	81.9043	81.7659	80.554		
7	82.8922	81.9180	77.7750	78.2163	75.8942	77.3754	78.7867	74.3572	77.2389	78.272		
8	80.1942	79.0787	79.5300	74.8835	80.9407	79.3496	76.6232	72.2527	80.5293	78.153		
9	77.5850	78.1653	79.4201	81.8047	82.4503	83.8673	76.5159	77.9000	78.6011	79.590		
10	73 6482	81 4310	78 5088	76 5771	72 6084	80 5710	81 4985	78 5333	76 9386	77 812		

 Next: Compare the distribution of the X's with the distribution of the Mean

www.anexas.net

From the main menu, click on Graph > Dotplot...

- The dot plot shows that the variation of the means is less than the variation of the X's
- By how much?

 Click on Stat > Basic Statistics > Display Descriptive Statistics...

1. Select only t	he first 3 stati	stics. Unselect all	others
Display D/ - star	tistics - Statistics	×	
Mean	Trimmed mean	☐ N nonmissing	
SE of mean	□ Sum	□ N missing	
Standard deviation	Minimum	🔲 N <u>t</u> otal	
Variance	Ma <u>x</u> imum	Cumulative N	
Coefficient of variation	∏ <u>R</u> ange	Eercent	
		Cumulative percent	2 Select default
First quartile	☐ Sum of squares	Check statistics	
Median	Skewness	Default	
Third quartile	Kurtosis	C None	
🗖 Interguartile range	MSSD	C All	
∏ Mode		10. 00 m	
Help		QK Cancel	
		3. Click OK	

The Central Limit Theorem, Part 1: Conclusion

- The standard deviation of averages is less than the standard deviation of individual observations by a factor of $\frac{1}{\sqrt{n}}$

The "Standard Error" of the Mean

SE Mean = Standard Deviation of the Mean

Variable	Mean	SE Mean	StDev	Otal Davi V'a
X1	80.006	0.0929	2.937	\neg Std Dev Means = $\frac{5td. \text{ Dev X S}}{2}$
X2	79.775	0.0962	3.043	
X3	80.181	0.0962	3.042	V II
X4	80.140	0.0968	3.062	
X5	79.998	0.0952	3.011	Std Dev X1 = 2 937
X6	79.912	0.0957	3.027	
X7	79.987	0.0939	2.970	
X8	80.059	0.0927	2.930	
X9	79.860	0.0959	3.031	
Mean	79.991	0.0308	0.974	
				\checkmark
1		SE Mean	$X1 = \frac{2}{\sqrt{1-1}}$	$\frac{2.937}{1000} = 0.0929$

10

The Central Limit Theorem, Part 2

- Part 2 of the Central Limit Theorem states that the averages of independent random data tend to a normal distribution even if the raw data themselves are not normally distributed
- The important role of the normal distribution in statistical theory derives, in large part, from this remarkable property
- Here's a graphical example below. Again, we will use Minitab to illustrate how Part 2 works:

- On the left is a histogram of 10,000 pieces of exponential data
- On the right is the average of 10,000 samples of size 25 taken from the distribution on the left
- The averages are normal even though the values being averaged are far from normal

The Central Limit Theorem, Part 2

Open a blank Minitab worksheet

 Have Minitab generate random normal data as shown below:

	wa	rksheet 1	***							
Output: vour	÷	C1	C2	C3	C4	C5	C6	C7	C8	C9
numbers will	> 1	25.1980	55.9567	55.2737	78.1289	54.9771	45.0978	51.2510	28.0212	77.8197
he different	2	68.9381	66.6212	29.1924	44.3467	47.7908	40.9916	73.9495	70.4063	31.2044
be different	3	32.2529	56.7699	41.1999	31.1444	47.1724	45.3103	65.2176	37.1441	60.9313
	4	36.4569	46.5723	39.7521	55.9497	66. <mark>7</mark> 198	61.6150	53.0317	64.9298	35.4842
	5	49.6973	43.3836	54.2835	61.6928	79.3652	25.5048	75.4674	66.3605	30.0810

ext:	Туре Х	(1X9) as s	hown] ⊏	\Rightarrow	Тур	e Mea	an as	C10's nan
										\backslash $/$
III w	orksheet 1	***								
+	C1	C2	C3	4	C5	C6	C7	C8	C9	C1
	X1	X2	X3	X4	X5	X6	X7	X8	X9	Mean
1	25.1980	55.9567	55.2737	78.1289	54.9771	45.0978	51.2510	28.0212	77.8197	
2	68.9381	66.6212	29.1924	44.3467	47.7908	40.9916	73.9495	70.4063	31.2044	
3	32.2529	56.7699	41.1999	31.1444	47.1724	45.3103	65.2176	37.1441	60.9313	
4	36.4569	46.5723	39.7521	55.9497	66.7198	61.6150	53.0317	64.9298	35.4842	
5	49.6973	43.3836	54.2835	61.6928	79.3652	25.5048	75.4674	66.3605	30.0810	
								and a second		

From the main menu, click on Calc > Row Statistics

Output: your numbers will be different Worksheet 1 *** C6 C1 C2 C3 C4 C5 C7 **C8** C9 C10 + X2 X3 X4 X5 X6 X7 X8 X1 X9 Mean 55,2737 28.0212 77.8197 52.4138 25,1980 55.9567 78.1289 54,9771 45.0978 51.2510 1 68.9381 66.6212 29,1924 44.3467 47,7908 40,9916 73.9495 70,4063 31,2044 52,6046 2 47.1724 45.3103 65.2176 32.2529 56.7699 41,1999 31.1444 37.1441 60.9313 46.3492 3 55.9497 66.7198 61.6150 53.0317 35.4842 4 36.4569 46.5723 39.7521 64.9298 51.1679 79.3652 25.5048 75.4674 66.3605 30.0810 43.3836 54,2835 61,6928 5 49,6973 53,9818 6 51,6288 46.4577 45.5643 35,4001 35.3005 49.4366 54.5525 77.2835 78,1380 52,6402 7 53.3256 27.4623 59.7192 76.4494 52.5922 71.7285 20.5115 47.9774 70.1768 53.3270 65.6376 61.5809 21.2702 76.9825 8 49.7997 75.0673 64.0382 51.5027 74.3060 60.0206 9 42.8136 71.2806 43.1861 74.0209 76.3645 20.6063 75.5673 66.1525 58.3835 58,7084 10 64 8112 57 6858 69 5942 35 4901 75 3026 71 5510 58 6209 77 9676 69 0517 64 4528

 Next: Compare the distribution of the X's with the distribution of the Mean

anexas consultancy se

www.anexas.net

From the main menu, click on Graph > Dotplot...

The Central Limit Theorem, Part 2: Conclusion

 The dot plot shows that even though the distribution of the X columns is uniform, the distribution of the Mean column approximates the normal distribution

Confidence Intervals

- An important application of the Central Limit Theorem and the normal distribution is the concept of confidence interval
- The issue: the need to know the mean of a "population" to make business decisions
- The question: how much confidence do we have when using a representative sample?
- The answer: calculate a confidence interval from the sample that is likely to contain the mean of the population

Confidence Intervals, cont.

95% of the data within ± 2 std. dev. Std. Dev. Means =

Confidence Intervals, cont.

 A 95% confidence interval on an average is given by the formula:

$$\overline{X} \pm 2\frac{S}{\sqrt{n}}$$

 Because roughly 95% of normal data falls within 2 standard deviations of the mean, we can use the above formula to compute the 95% confidence interval on a mean or average

Calculating the 95% Confidence Interval

Stack columns 1-9 and compute the standard deviation:
 Data > Stack > Columns

Calculating the 95% Confidence Interval, cont.

 Display the basic statistic for column all Stat > Basic Statistics > Display Basic Statistics

- The true mean of all the data we generated was 50.
- 95% of the time the confidence interval around our overall mean (in the above example, 49.711) will contain the true mean, 50. Here, the CI is 49.711± 2 × 0.183 = (49.345 to 50.08) and contains the true mean. Does your CI contain the mean?

Summary

- Many statistical tools are built based on the assumption of normality (e.g., process capability)
- Understanding the properties and characteristics of the normal distribution is indispensable to Black Belts
- The Central Limit Theorem (CLT) impacts many statistical tools (e.g., control charts, hypothesis testing)
- Confidence intervals measure the "uncertainty" there is in our conclusions

Anexas Consultancy Services

Sample Size Calculations

Sample Size

Purpose of Sample	Formula
Estimate average (e.g., determine baseline cycle time) CONTINUOUS / VARIABLE DATA	$n = \left(\frac{2s}{d}\right)^{2}$ (Where d = precision: ±units) S = estimate of standard deviation
Estimate proportion (e.g., determine baseline % defective) ATTRIBUTE / DSICRETE DATA	$n = \left(\frac{2}{d}\right)^{2} (p)(1-p)$ (Where d = precision: ±units) P = proportion of defective in the output

Thumb Rule

Variable Data = Optimum Sample Size is 30 to 50 Attribute Data = Optimum sample size is 200 to 1100

Precision (d)

- Precision is how narrow you want the range to be for an estimate of a characteristic
 - Estimate cycle time within 2 days
- Use the symbol d to represent precision
- Precision is equal to half the width of a confidence interval
 - A 95% CI = (48, 52) for cycle time (in days) means we are 95% confident the interval from 48 days to 52 days contains the average cycle time
 - Width of the CI = 4 days
 - Precision = d = 2 days (= estimate is within \pm 2 days)
- You decide what precision you want

 \sqrt{n}

 Precision is inversely proportional to the square root of sample size _1_

www.anexas.net

Precision and Sample Size

- To improve precision, you need to increase sample size (which incurs more cost)
- There is no clear-cut answer about how much precision you need; the answer depends on the business impact of using the estimate
- Each situation is unique; don't pattern your decisions after someone else's decision
- As a thumb rule 3% to 4% of the mean (for Continuous data) or 3% of uncertainty in proportion estimate (for Attribute data) can be taken as precision in absence of any guideline

Example: Choosing a Precision Level

Background:

- Suppose you work in a telephone call center that usually answers 2,000 incoming calls/day
 - You want to time a sample of calls to find average call length
- Before advising you on how many calls to sample, a quality consultant asks what level of precision you want in the estimate: "Does your estimate have to be within 5 minutes?
 1 minute? 30 seconds?"
- You intend to use the average call length to help you make staffing decisions
 - You figure that if average call length changes by 1/4 minute, you will need to add (or drop) a staff person to answer incoming calls
- Half of 1/4 minute is 1/8 minute, so the quality consultant assigns the value of 1/8 minute to d, the precision
 - The range of your estimate will therefore be ± 1/8 minute

Sample Size for Estimating an Average

Sample Size for Estimating an Average, cont.

Example

- What is the sample size required to estimate the average cycle time (in days) of a new process?
 - Historical data from similar processes show a typical standard deviation = 5 days and you want the estimate to be within 1 day
 - How does the sample size change if you want the estimate to be within 2 days?

$$n = \left(\frac{(2)(5)}{1}\right)^2 = 10^2 = 100$$

$$n = \left(\frac{(2)(5)}{2}\right)^2 = 5^2 = 25$$

Exercise: Sample Size for Estimating Averages

Objective: Practice using sample size formula for averages Instructions:

- Use the sample size formula for averages to answer the following questions $n = \left(\frac{2s}{d}\right)^2$
- Supposing you want to estimate the average length of incoming phone calls within 1 minute, what sample size do you need? (Historical data show a typical standard deviation = 3 minutes)
- **2. How many calls do you need** to sample to get an estimate within 1/8 minute?

Time: 3 minutes

Exercise Answers: Sample Size for Estimating Averages

Question 1

n =
$$\left(\frac{(2)(3)}{1}\right)^2 = 6^2 = 36$$

Question 2

$$n = \left(\frac{(2)(3)}{1/8}\right)^2 = 48^2 = 2304$$

How to Estimate the Standard Deviation

The Catch-22

- To estimate sample size, you need to know the standard deviation
- You need to have some idea of the amount of variation in the data because as the variability increases, the necessary sample size increases
- But if you haven't sampled anything yet, how can you know the standard deviation?

How to Estimate the Standard Deviation, cont.

Options for estimating standard deviation:

- Find existing data and calculate s
- Use a control chart (for individuals) from a similar process

$$s = \frac{UCL - LCL}{6}$$
 or $s = \frac{UCL - Average}{3}$

- Collect a small sample and calculate s
- Take an educated guess based on your process knowledge and memory of similar data (most people are not too good at this)

Sample Size for Estimating a Proportion

Sample Size for Estimating a Proportion, cont.

Example

- What is the sample size required to estimate the defect rate, with 95% confidence, when you expect it to be around "10% defective" and you want the estimate to be within 3%?
- How does the sample size change if you want the estimate to be within ±1%?

$$n = \left(\frac{2}{.03}\right)^2 (.10)(1-.10)$$

$$=(4444.4)(.10)(.90)$$

=400

$$n = \left(\frac{2}{.01}\right)^2 (.10)(1 - .10)$$

=3600

Exercise: Sample Size for Estimating Proportions

Objective: Practice using the sample size formula for proportions

Instructions:

Use the sample size formula for

$$n = \left(\frac{2}{d}\right)^2 (p)(1-p)$$

proportions to answer the following questions

- **1. Suppose you want to estimate** (within 2%) the proportion of customers who will buy a new service
 - You' re guessing that 50% of them will buy
 - What sample size do you need?
- **2. How many customers do you need** to sample for your estimate to be within 4%?

Time: 3 minutes

Exercise Answers : Sample Size for Estimating Proportions

Question 1

$$n = \left(\frac{2}{.02}\right)^2 (.5)(1-.5)$$

= 2500

Question 2

$$n = \left(\frac{2}{.04}\right)^2 (.5)(1-.5)$$

Using Precision to Justify Sample Sizes

- 1. Determine how many samples you can afford (n)
- 2. Then ask, what will that sample provide in terms of precision?
 - That is, an average within \pm d units
 - Or a proportion within \pm d%
- 3. Is that precise enough?
- 4. If not precise enough:
 - Make a table of precision and cost for various sample sizes to determine the gain in precision per dollar spent on samples
 - Then choose a sample size that you can justify based on the gain in precision or the needed precision for your situation

$$d = 2\sqrt{\frac{(p)(1-p)}{n}}$$

 $d = \frac{2s}{\sqrt{n}}$

Sampling from a Limited (Finite) Population

 The sample size formulas assume the sample size (n) is small relative to the population (N)

• If
$$\frac{n}{N}$$
 is > .05

- You are sampling more than 5% of the population
- You can adjust the sample size with the finite population formula:

$$n_{finite} = \frac{n}{1 + \frac{n}{N}}$$

Sampling from a Limited (Finite) Population, cont.

Example

- You want to know the average assembly cycle time, within ± 1.5 days, of a complex device your facility assembles
- Given a st. dev. of 12 days (from another study of cycle time), the number of files to sample is 256 $n = \left(\frac{24}{1.5}\right)^2 = 256$
- Suppose that only 300 units were made in the last year, since the cycle time data started to be collected
 - Do you need to sample nearly all 300 units?
 - No, you can use the finite population formula
 - Applying finite population formula, the sample size would be 140

Anexas Consultancy Services

Data Collection

You Are Here

Five-Step Data Collection Process

Project Worksheet: Data Collection Plan (Preview)

Data C	ollection Pla	n	Project		
What questior	ns do you want to answer?				
Data			Operational Definition and Procedures		
What	Measure type/ Data type	How measured ¹	Related conditions to record ²	Sampling notes	How/where recorded (attach form)
Notes Notes Notes Description Notes Description Notes Description Notes Notes No		What is your plan for starting data collection? (attach details if necessary) How will the data be displayed? (Sketch below)			

anexas consultancy se

Data Collection Plan Features

Data Collection Plan

Project

What questions do you want to answer?

Being clear about your question will help you make sure you collect the right data

Data Collection Plan Features, cont.

How will you ensure consistency and stability?

What will you do to make sure the data collected at one point in time are comparable to data collected at other times? That is, that no biases have been introduced in the way the data are collected? What is your plan for starting data collection? (Attach details if necessary)

Just how will you go about collecting the data?

How will the data be displayed? (Sketch below)

Thinking about how you will display the data will help you make sure you're getting the right kind of data to answer the question you have in mind

Where to Collect Data: Process or Result?

Examples of Data

Type/How Obta	ined Examples
Continuous: (or "variables")	Service: Elapsed time to complete transaction, average length of phone calls Manufacturing: Elapsed cycle time, metal purity, gauge
Measuring instrument or a calculation	production rates, weight, length, speed Both: Budget vs. actual (dollars), average customer satisfaction score, amount purchased
Discrete: Percentage or proportion	Service: Proportion of late applications, incorrect invoices Manufacturing: Proportion of defective items, reworked items, damaged items, late shipments
Count occurrences and non occurrences	Both: Proportion of employees absent, incomplete orders
Discrete: Count Count occurrences in an area of opportunity	Service: Number of applications, errors, complaints, etc. Manufacturing: Number of computer malfunctions, machine breakdowns, accidents
Discrete: Attribute Observation	Service: Type of application, type of request Manufacturing: Type of product Both: Type of customer, type of method used (new vs. old), location of activity (city/state)
Discrete: Ordinal Observation or ranking	Both: Customer rating (1=very satisfied/ 5= very dissatisfied); day of week (MTWRF), date, time order

Anexas Consultancy Services

Sampling Approaches

Selecting a Random Sample

- Many people think they can select a random sample from a list without the aid of statistical techniques
- Statistician Brian Joiner likes to point out that "haphazard sampling is not the same as random sampling"
- When trying to choose a sample, do not merely choose whatever items you like from a list or population

Minitab Follow-Along: Select a Random Sample

Background: Suppose you have 3,393 customers listed in alphabetical order and you wish to randomly sample 100 of them to determine their expectations regarding cycle time for resolving complaints

Minitab Follow-Along: Select a Random Sample, cont.

Instructions:

- 1. Open a blank worksheet in Minitab
- 2. Generate ID numbers between 1 and 3,393 and store them in C1

Calc > Make Patterned Data > Simple Set of Numbers

Minitab Follow-Along: Select a Random Sample, cont.

Randomly select 100 ID numbers from C1 and store them in C2
Calc > Random data > Sample from Columns > …

Sample From Columns		×
C1	Sample 100 rows from co	lumn(s):
	Cl	<u>_</u>
		<u> </u>
	Store samples in:	
	C2	<u>.</u>
		<u>.</u>
Select		
Help	<u>0</u> K	Cancel

Minitab Follow-Along: Select a Random Sample, cont.

Sort the sample ID numbers in order and store them in C3 4. Data > Sort...

Sort		2
	<u>S</u> ort column(s):	
	C2	▲ ▼
	By column: C2 Descen	ding
	By column: Descen	ding
	By <u>c</u> olumn: Descen	ding
	By column: 🗌 Descen	ding
	S <u>t</u> ore sorted data in:	
	O New worksheet	
	Name:	(Optional)
	○ 0 <u>r</u> iginal column(s)	
	Column(s) of current worksheet:	
	c3	A
Select		▼.
Help	<u>K</u>	Cancel
,	www.anexas.net	

Minitab Follow-Along: Select a Random Sample, cont.

- 5. Compare your sample with your neighbor's sample. Did you get the same ID numbers?
- 6. How would you use the ID numbers in C3 to select your sample?

How Random Sampling Ensures Representativeness of a Population

- Even with small populations, there are many ways that a random sample could turn out
 - Example: There are 1.73E13 (17.3 trillion) ways of selecting 10 units randomly from 100 units

Sample size	Population size (N)		
(n)	100	1000	10000
10	1.73 E ¹³	2.63E ²³	2.74E ³³
100	1	6.39E ¹³⁹	6.52E ²⁴¹
1000		1	8.73E ¹⁴⁰⁹

Number of Ways to Select n Units From N

How Random Sampling Ensures Representativeness of a Population, cont.

- There are relatively few ways to choose a sample that is systematically different from the rest of the units
 - Example: It is possible to randomly draw the 10 smallest (or largest) units from a list of 100, but the chance is astronomically small (2 in 17.3 trillion)
- The vast majority of the trillions of combinations will adequately represent the diversity of the population as a whole
- Random sampling ensures the sample is not chosen to make a predetermined (biased) case—even unconsciously—because each unit has the same chance of being chosen

Sampling Approaches

Anexas Consultancy Services

Measurement Systems Analysis (MSA)

Why Measure?

- To understand a decision:
 - Meet standards & specifications
 - Detection / reaction oriented
 - Short-term results
- Stimulate continuous improvement:
 - Where to improve?
 - How much to improve?
 - Is improvement cost effective?
 - Prevention oriented
 - Long-term strategy

"If you cannot measure, you cannot improve!" -- Taguchi

Observed Variation

Measurement Variation

www.anexas.net

Part Variation

What is an MSA

- Scientific and objective method of analyzing the validity of a measurement system
- A "tool" which quantifies:
 - 1) Equipment Variation
 - 2) Appraiser (Operator) Variation
 - 3) The Total Variation of a Measurement System
- MSA is NOT just Calibration
- MSA is NOT just Gage Repeatability & Reproducibility (R&R)

Measurement System Analysis is often a "project within a project"

Anexas Consultancy Services

Components of Measurement Error

Components of Measurement Error

- Resolution / Discrimination
- Accuracy (bias effects)
- Linearity
- Stability (consistency)
- Repeatability (test-retest)
- Reproducibility

Each component of measurement error can contribute to variation causing wrong decisions to be made

Resolution / Discrimination

Resolution

- Simplest measurement system problem
- Poor resolution is a common issue
- Impact is rarely recognized and/or addressed
- Easily detected
- No special studies are necessary
- No "known standards" are needed

Definitions:

- Resolution / Discrimination
 - Capability to detect the smallest tolerable changes
- Inadequate Measurements Units
 - Measurement units too large to detect variation present
- Guideline: "10 Bucket Rule"
 - Increments in the measurement system should be one-tenth the product specification or process variation

Resolution / Discrimination

Given this form :

Customer Name	
Date Received	
Date Issued	

What percent of requests are processed within 4 hours of receipt?

Given this NEW form :

Customer Name	
Date Received	
Time Received	
Date Issued	
Time Issued	

What percent of requests are processed (issued) within 4 hours of receipt?

Resolution

On Hold complaints per hour

Complaint	Number	
Transfers	50	
Disputes	210	
Information	143	
Other	_12	
Total	415	
What is the customer's biggest complaint?		

Resolution

On Hold complaints per hour

Complaint		Number
Transfers		50
Set up or Maintenance	Disputes	70
Service Received Dispu	tes	60
Billing Amount Disputes		80
Update Account Informa	tion	115
Request Information		28
Other		_12
	Total	415

What is the customer's biggest complaint?

Resolution Actions

- Measure to as many decimal places as possible
- Use a device that can measure smaller units
- Live with it, but document that the problem exists
- Larger sample size may overcome problem
- Priorities may need to involve other considerations:
 - Engineering tolerance
 - Process Capability
 - Cost and difficulty in replacing device

Measurements are "shifted" from "true" value

Difference between the observed average value of measurements and the master value

Master value is an accepted, traceable reference standard

Customers Surveyed . . . "Please Comment on Our Service . . ."

Do You Have Any Complaints?

□ Yes

(If "Yes," Please complete the following):

1. List the Problems

2. Date_____

3. Time_____

4. Name of Rep.

Accuracy / Bias Actions

- Calibrate when needed / scheduled
- Use operations instructions
- Review specifications
- Review software logic
- Create Operational Definitions

Linearity

Measurement is not "true" and/or consistent across the range of the "gage"

Linearity

Full Range of Gage

Linearity – Attribute Example

Survey scoring:

 Super Outstanding!	10
 Outstanding!	9
 Incredible	8
 Excellent	7
 Great	6
 Very Good	5
 Good	4
 OK	3
 Fair	2
 Poor	1

Is this a fair scale?

Linearity Actions

- Use only in restricted range
- Rebuild
- Use with correction factor / table / curve
- Sophisticated study required and will not be discussed in this course

Stability

Stability

- Measurements remain constant and predictable over time
 - for both mean and standard deviation
- No drifts, sudden shifts, cycles, etc.
- Evaluated using control charts

Stability – Attribute Example

Stability Actions

- Change / adjust components
- Establish "life" timeframe
- Use control charts
- Use / update current SOP

Precision

Precision

Repeatability (A Component of Precision)

- Variation that occurs when repeated measurements are made of the same item under absolutely identical conditions
 - Same:
 - operator
 - set-up
 - units
 - environmental conditions
 - Short-term

Reproducibility (A Component of Precision)

- The variation that results when different conditions are used to make the measurements
 - Different:
 - operators
 - set-ups
 - test units
 - environmental conditions
 - locations
 - companies
 - Long-term

R & R

The Big Picture: Linking Them All Together

R & R Actions

- Repeatability
 - Repair, replace, adjust equipment
 - SOP
- Reproducibility
 - Training
 - SOP

Anexas Consultancy Services

Attribute Measurement Studies

Purpose of Attribute MSA

- Assess standards against customers' requirements
- Determine if all appraisers use the same criteria
- Quantify repeatability and reproducibility of operators
- Identify how well measurement system conforms to a "known master"
- Discover areas where:
 - Training is needed
 - Procedures are lacking
 - Standards are not defined

Attribute MSA – Excel Method

- Allows for R & R analysis within and between appraisers
- Test for effectiveness against standard
- Limited to nominal data at two levels

Attribute MSA Example:

+	C1-T	C2-T	C3-T	C4-T	C5-T	C6-T	C7-T
	Attribute	Appraiser 1 Trial 1	Appraiser 1 Trial 2	Appraiser 2 Trial 1	Appraiser 2 Trial 2	Appraiser 3 Trial 1	Appraiser 3 Trial 2
1	Pass	Pass	Pass	Pass	Pass	Pass	Pass
2	Pass	Pass	Pass	Pass	Pass	Pass	Pass
3	Pass	Pass	Pass	Pass	Pass	Pass	Pass
4	Pass	Pass	Pass	Pass	Pass	Fail	Pass
5	Fail	Fail	Fail	Fail	Fail	Pass	Fail
6	Fail	Pass	Pass	Pass	Pass	Pass	Pass
7	Pass	Pass	Pass	Pass	Pass	Pass	Pass
8	Pass	Pass	Pass	Pass	Pass	Pass	Pass
9	Fail	Fail	Fail	Fail	Fail	Fail	Fail
10	Pass	Pass	Pass	Pass	Pass	Pass	Pass
11	Pass	Pass	Pass	Pass	Pass	Pass	Pass
12	Pass	Pass	Pass	Pass	Pass	Pass	Pass
13	Pass	Pass	Pass	Pass	Pass	Pass	Pass

Open file Attribute MSA.mpj

Scoring Example:

% APPRAISER SCORE -> 100.00% % SCORE VS. ATTRIBUTE -> 78.57%

 78.57%
 100.00%

 64.29%
 71.43%

 SCREEN % EFFECTIVE SCORE -> 57.14%

 42.86%

 SCREEN % EFFECTIVE SCORE vs. ATTRIBUTE ->

- 100% is target for all scores
 - <100% indicates training required</p>
- Appraiser score = repeatability
- Screen % Effectiveness Score = reproducibility
- % Score vs. Attribute
 - individual error against a known population
- Screen % Effective vs. Attribute
 - Total error against a known population

Attribute MSA – Minitab Method

- Allows for R & R analysis within and between appraisers
- Test for effectiveness against standard
- Allow nominal data with two levels
- Allows for ordinal data with more than two levels

Minitab Method -- Data Entry

Ŧ	C1-T	C2-T	C3-T	C4-T	C5-T	C6-T	C7-T
	Attribute	Appraiser 1 Trial 1	Appraiser 1 Trial 2	Appraiser 2 Trial 1	Appraiser 2 Trial 2	Appraiser 3 Trial 1	Appraiser 3 Trial 2
1	Pass	Pass	Pass	Pass	Pass	Pass	Pass
2	Pass	Pass	Pass	Pass	Pass	Pass	Pass
3	Pass	Pass	Pass	Pass	Pass	Pass	Pass
4	Pass	Pass	Pass	Pass	Pass	Fail	Pass
5	Fail	Fail	Fail	Fail	Fail	Pass	Fail
6	Fail	Pass	Pass	Pass	Pass	Pass	Pass
7	Pass	Pass	Pass	Pass	Pass	Pass	Pass
8	Pass	Pass	Pass	Pass	Pass	Pass	Pass
9	Fail	Fail	Fail	Fail	Fail	Fail	Fail
10	Pass	Pass	Pass	Pass	Pass	Pass	Pass
11	Pass	Pass	Pass	Pass	Pass	Pass	Pass
12	Pass	Pass	Pass	Pass	Pass	Pass	Pass
13	Pass	Pass	Pass	Pass	Pass	Pass	Pass

- Same data as Excel example
- Arranged in multiple columns
- Data can also be stacked in single column

Attribute Study – Minitab Analysis

Tool Bar Menu > <u>S</u>tat > Quality Tools > Attribute Gage R&R Study

al Mi	nitab - Attribute MSA.N	IPJ - [Worksheet 1 ***]									
i 💷 🛛	ile <u>E</u> dit D <u>a</u> ta <u>C</u> alc	Stat Graph Editor	<u>T</u> ools	W	indow <u>H</u> el	p Assista <u>n</u> t					
100		Basic Statistics	Þ	Σ	366	D 🖪 🗂 🖽 🗌					
		Regression	•								
f#		ANOVA	•	15	2 + 1 +	- I <u>I</u>					
k]	COOX • RAN	DOE	÷								
÷	C2-T	Control Charts	•	С	:4-T	C5-T	C6-T		C7-T	С	
	Appraiser 1 Trial 1	Quality Tools	Þ	177	Run Chart.			ıl 1	Appraiser 3 Trial 2		
1	Pass	Reliability/Survival	•	1	Pareto Cha	irt			Pass		
2	Pass	Multivariate	•	\rightarrow	- Cause-and	-Effect			Pass		
3	Pass	Time Series	•	~					Pass		
4	Pass	Tables		?	Individual	Distribution Iden	tification		Pass		
5	Fail	Nonnarametrics		æ	Johnson Transformation			10	Fail		
6	Pass	Equivalence Tests			Capability	<u>Analysis</u>			Pass		
7	Pass	Power and Sample Size		Capability Sixpack				Pass			
8	Pass	r uss	1 433	Л	Tolerance	Intervals			Pass		
9	Fail	Fail	Fail	il Const Studie					Fail		
10	Pass	Pass	Pass	-	Gage Stud	У			Pass		
11	Pass	Pass	Pass		Create Att	ribute Agreemen	t Analysis Worksheet	s	Pass		
12	Pass	Pass	Pass		Attribute A	Agreement Analys	sis		Pass		
13	Pass	Pass	Pass	2	Acceptanc	e Sampling by At	ttributes				
14	Pass	Pass	Pass	-	Acceptanc	e Sampling by Va	- ariables	Attri	bute Agreement Analysi	s	
15	Fail	Fail	Fail					Evalu	ate the consistency and		
16	Pass	Pass	Pass	1	<u>M</u> ulti-Vari	Chart		that a	are made by multiple		
17	Pass	Pass	Pass	uii)	Symmetry	Plot		appra	aisers.		
18	Pass	Pass	Pass			Pass	Pass	0	rass	- 18	
19	Fail	Fail	Fail			Fail	Fail		Fail		
20	Pass	Pass	Pass			Pass	Pass		Pass		
21	Pass	Pass	Pass			Pass	Pass		Pass		
22	Fail	Fail	Pass			Pass	Pass		Pass		
23	Pass	Pass	Pass			Pass	Pass		Pass		
24	Pass	Pass	Pass			Pass	Fail		Pass		
25	Fail	Fail	Fail			Fail	Fail		Fail		

Attribute Study – Minitab Analysis (Continued)

Attribute MSA – Minitab Graphical Output

Attribute MSA – Session Window Results

- Each Appraiser vs Standard
- Assessment Agreement
- Appraiser # Inspected # Matched Percent (%) 95.0% CI
- Bob 30 28 / 93.3 (7.9, 99.2)
- Sue 30 29 96.7 (82.8, 99.9)
- Tom 30 24 80.0 (61.4, 92.3)
- # Matched: Appraiser's assessment across trials agrees with standard.

0

- Assessment Disagreement
- Appraiser # Pass/Fail Percent (%) # Fail/Pass Percent (%) # Mixed Percent (%)

3.3

0.0

0.0

0 \

5

0.0

0.0

16.7

- Bob 1 3.3 1
- Sue 1 3.3 0
- Tom 1 3.3
- # Pass/Fail: Assessments across trials = Pass / standard = Fail.
- # Fail/Pass: Assessments across trials = Fail / standard = Pass.
- # Mixed: Assessments across trials are not identical.
- Between Appraisers
- Assessment Agreement
- # Inspected # Matched Percent (%) 95.0% CI
- 30 24(80.0 (6)14, 92.3)
- # Matched: All appraisers' assessments agree with each other.
- All Appraisers vs Standard
- Assessment Agreement
- # Inspected # Matched Percent (%) 95.0% CI
- **3**0 23 76.7 (57(7, 90.1)
- # Matched: All appraisers' assessments agree with standard.

Individual vs. Standard

Disagreement

(repeatability)

assessment

Between appraisers (reproducibility)

Total agreement (against known)

Anexas Consultancy Services

Variables Measurement Studies

Six Step Variables MSA

- 1. Conduct initial gage calibration (or verification)
- 2. Perform trials and data collection
- 3. Obtain statistics via Minitab
- 4. Analyze, interpret results
- 5. Check for inadequate measurement units
- 6. On-going evaluation
 - What would be your long-term gage plan?

Trials and Data Collection

- Generally two to three operators
- Generally 5-10 process outputs to measure
- Each process output is measured 2-3 times (replicated) by each operator

Randomization is Critical

Randomization, Repeats, Replicates

Randomization

- Runs are made in an arbitrary vs. patterned order
- Average out effects of noise or unknown factors
- Tradeoff Invalid results versus slight inconvenience (if any)

Repeats

- Running more than one sample of a single run
- Results are averaged

Replication

- Running entire experiment in a time sequence
- MSA allows for repeatability study

Variables MSA – Minitab Example

=0.5	ivehi			andomiz	nc 2 ad arder)
Part Trial 1	Operator Trial 1	Response Trial 1	Parts Trial 2	Operator Trial 2	Response Trial 2
1	1	0.60000	8	1	0.85000
2	1	1.00000	2	1	1.00000
3	1	0.80000	10	1	0.60000
4	1	0.95000	6	1	1.00000
5	1	0.45000	5	1	0.55000
6	1	1.00000	4	1	0.85000
7	1	0.95000	7	1	0.95000
8	1	0.80000	1	1	0.65000
9	1	1.00000	9	1	1.00000
10	1	0.70000	3	1	0.85000
1	2	0.55000	1	2	0.55000
2	2	0.95000	2	2	1.05000
3	2	0.75000	3	2	0.80000
4	2	0.75000	4	2	0.80000
5	2	0.40000	5	2	0.40000
6	2	1.05000	6	2	1.00000
7	2	0.90000	7	2	0.95000
8	2	0.70000	8	2	0.75000
9	2	0.95000	9	2	1.00000
10	2	0.50000	10	2	0.55000
1	3	0.55000	1	3	0.50000
2	3	1.00000	2	3	1.05000
3	3	0.80000	3	3	0.80000
4	3	0.80000	4	3	0.80000
5	3	0.50000	5	3	0.45000
6	3	1.05000	6	3	1.00000

Open file Variable MSA.mtw

MSA Using Minitab

10 Process Outputs 3 Operators 2 Replicates

- Have Operator 1 measure all samples once (as shown in the outlined block)
- Then, have Operator 2 measure all samples once
- Continue until all operators have measured samples once (this is Replicate 1)
- Repeat these steps for the required number of Replicates
- Enter data into Minitab in 3 columns as shown

.5	-			(Randomized order)				
Part Tria	al 1	Operator Trial 1	Response Trial 1	Parts Trial 2	Operator Trial 2	Response Trial 2		
	1	1	0.60000	8	1	0.85000		
	2	1	1.00000	2	1	1.00000		
	З	1	0.80000	10	1	0.60000		
	4	1	0.95000	6	1	1.00000		
	5	1	0.45000	5	1	0.55000		
	6	1	1.00000	4	1	0.85000		
	7	1	0.95000	7	1	0.95000		
	8	1	0.80000	1	1	0.65000		
	9	1	1.00000	9	1	1.00000		
	10	1	0.70000	3	1	0.85000		
	1	2	0.55000	1	2	0.55000		
	2	2	0.95000	2	2	1.05000		
	З	2	0.75000	3	2	0.80000		
	4	2	0.75000	4	2	0.80000		
	5	2	0.40000	5	2	0.40000		
	6	2	1.05000	6	2	1.00000		
	7	2	0.90000	7	2	0.95000		
	8	2	0.70000	8	2	0.75000		
	9	2	0.95000	9	2	1.00000		
	10	2	0.50000	10	2	0.55000		
-	1	3	0.55000	1	3	0.50000		
	2	3	1.00000	2	3	1.05000		
	3	3	0.80000	3	3	0.80000		
	4	3	0.80000	4	3	0.80000		
	5	3	0.50000	5	3	0.45000		
	6	3	1.05000	6	3	1.00000		

Renlicate 2

7

8

3

3

R 01

Replicate 1

USL=1.5

7

8

3

3

0.95000

0.80000

0.95000

0.80000

Stack the Data

Minitab - Untitled - [Variable MSA.MTW ***]

anex

consultancy

as

www.anexas.net

R 01

313

Stacked and Ready for Analysis

C8	C9	C10	C11
Parts	Operators	Responses	
1	1	0.60000	
2	1	1.00000	
3	1	0.80000	
4	1	0.95000	
5	1	0.45000	
6	1	1.00000	
7	1	0.95000	
8	1	0.80000	-
9	1	1.00000	
10	1	0.70000	
1	2	0.55000	
2	2	0.95000	
3	2	0.75000	
4	2	0.75000	
5	2	0.40000	
6	2	1.05000	
7	2	0.90000	
8	2	0.70000	
9	2	0.95000	

NOTE:

C08 C09, C10 are the columns in which the respective data are found in our example. You must have ALL data STACKED in these columns and named those columns as mentioned

Prepare the Analysis

JI Mi	nitab - Untitled	- [Variabl	e MSA.MTW ***]										·····				
I 🛄 I	ile <u>E</u> dit D <u>a</u> t	a <u>C</u> alc	Stat Graph Eg	ditor <u>T</u> ools	Wi	ndow <u>H</u> elp	Assistant										
📔 f# R]	HOIX 6 F F 1 6 13 F D 0 \ •	110 1110 1110	Basic Statisti Regression ANOVA DOE	cs	Σ	≦ ि ि ि () ✓ + ₹ ≓		· •									
+	C1		Control Char	ts 🕨		C4	C5		C6		C7	C8	C9	C1	0	C11	C12
	Part Trial 1	Opera	Quality Tools	s 🕨	1	Run Chart						Parts	Operators	Respo	nses		
1	1		Reliability/Si	urvival 🕨	I.	Pareto Chart						1	1	0.6	0000		
2	2		Multivariate	•	\gg	Cause-and-E	ffect					2	1	1.0	0000		
3	3		Time Series	•	20	-			24			3	1	0.8	0000		
4	4		Tables	•	3		istribution identiti	catio	n			4	1	0.9	5000		
5	5		Nonparamet	trics 🕨	aht	Johnson Transformation						5	1	0.4	5000		
6	6		Equivalence	Tests 🕨			narysis			6	1	1.0	0000				
7	7		Power and S	ample Size			краск					7	1	0.9	5000		
8	8			0.0000	Л	Tolerance In	tervals					8	1	0.8	0000		
9	9		1	1.0000		Gage Study			•	G 4	Type 1	Gage Study			0		
10	10		1	0.7000		Croata Attrik	uto Agroomont A	nalus	is Workshoot		Carata				0		
11	1		2	0.5500	199	Attribute Ag	reement Analysis	indiys	is worksheet	E V	Gage P	Jaye Kok S	lucy workshe	et	0		-
12	2		2	0.9500		Attrib <u>u</u> te Ag	reement Analysis.	••••		iter.	Gage N	un chart	Dine Chudu		0		-
14	3		2	0.7500	2	Acceptance	Sampling by Attri	butes		-11E	Cage B	B Chudu (C	bias Study		0		
15			2	0.4000		Acceptance	Sampling by Varia	ables	•	X Re	Gage R	BR Study (C	osted)		0		
16	6		2	1 0500	\mathcal{F}	Multi-Vari Cl	nart			G.	Gage R	PrD Study (N	(nanded)		Gage	R&R Stud	v (Crosse
17	7		2	0.9000	nin	Symmetry Pl	ot			•	Gage K	orn study (E	(panued)		Asses	the variat	ion in you
18	8		2	0.7000	0	8		2	0,75000		Attribut	e Gage Stud	ly (Analytic M	ethod)	measu	rement sy	stem when
19	9		2	0.9500	0	9		2	1.00000)		9	2	0.9	every	operator n	neasures
20	10		2	0.5000	0	10		2	0.55000)		10	2	0.5	every	part in the	study.
- 24	4		2	0 5500	n	4		2	0 50000			4	0	0.5	5000		

Use the commands

- > <u>Stat</u> > <u>Q</u>uality Tools
- > Gage R&R Study (Crossed) Each process output measured by each operator

OR

> Gage R&R Study (Nested) For "destructive tests" where each process output is measured uniquely by each operator

Choose Method of Analysis

	Part numbers:	Parts	Gage Info
	Operators:	Operators	Options
	Measurement data:	Responses	Conf Int
			Storage
	Method of Analysis		
Select	(ANOVA		
			ОК

ANOVA method is preferred

- Gives more information

MSA Output:

Session Window

Two-Way ANOVA Table With Interaction

consultancy <mark>SE</mark>

Source	DF	SS	MS	F	P				
Part	9	2.05871	0.228745	39.7178	0.0000				
Operator	2	0.04800	0.024000	4.1672	0.03256				
Operator*Part	18	0.10367	0.005759	4.4588	0.00016				
Repeatability	30	0.03875	0.001292						
Total	59	2.24912							
Gage R&R			%Contribu	tion					
Source		VarComp	(of VarCo	omp)					
Total Gage R&R		0.004437	10.67						
Repeatabilit	У	0.001292	3.10						
Reproducibil	ity	0.003146	7.56						
Operator		0.000912	2.19						
Operator*P	art	0.002234	5.37						
Part-To-Part		0.037164	89.33						
Total Variatio	n	0.041602	100.00						
		StdDev	Study Var	s %Study	Var				
Source		(SD)	(5.15*SD)	(%SV)					
Total Gage R&R		0.066615	0.34306	32.66					
Repeatabilit	У	0.035940	0.18509	17.62					
Reproducibil	ity	0.056088	0.28885	27.50					
Operator		0.030200	0.15553	14.81					
Operator*P	art	0.047263	0.24340	23.17					
Part-To-Part		0.192781	0.99282	94.52					
Total Variatio	n	0.203965	1.05042	100.00					
Number of Dist	Number of Distinct Categories = 4								

Graphs

What does all this mean?

www.anexas.net

consultancy

Graphical Output - 6 Graphs in All

R 01

Graphical Output Metrics

CHART OUTPUT

- Xbar Chart: Shows sampled process output variety
 - Reproducibility / bias
- R Chart: Helps identify unusual measurements
 - Resolution / repeatability
- Bar Chart: Distinguishes R & R from Process Output-Process Output
 - Location of variation

These are your leading graphical indicators

Bar Charts for Components

Components of Variation

Answers: "Where is the variation?"

www.anexas.net

Closer Look at the Xbar & R Charts

Tabular Output Metrics

%Contribution

(%Contribut	lion			
Source	VarCom,	(of VarCor	ap)			
Total Gage R&R	0.004437	10.6				
Repeatability	0.001292	3.10				_
Reproducibility	0.003146	7.56		đ	Ctudy	
Operator	0.000912	2.19			/oSludy	
Operator*Part	0.002234	5.37				1
Part-To-Part	0.037164	89.33				
Total Variation	0.041602	100.00				
	StdDev	Study Var	Study V	ar //folerance		
Source	(SD)	(5.15*SD)	(%SV)	(SV/Toler)		
	5	2010/07/07/06-2010/07/0		Control Conference - Na Control		
Total Gage R&R	0.066615	0.34306	32.60	68.0	9	Tolerance
Repeatability	0.035940	0.18509	17.62	37.02		
Reproducibility	0.056088	0.28885	27.50	57.77		
Operator	0.030200	0.15553	14.81	31.11		
Operator*Part	0.047263	0.24340	23.17	48.68		
Part-To-Part	0.192781	0.99282	94.52	198.56		
Total Variation	0.203965	1.05042	100.00	210.08		
Number of Distinct	, Categorie	:5 4				
				Number of	Distinct (Categories

% Contribution =
$$\frac{\sigma^2_{R\&R}}{\sigma^2_{Total}} *100$$

- Measurement System Variation (R & R) as a percentage of Total Observed Process Variation
- Includes both repeatability and reproducibility

% Study Variation

% Study Variation =
$$\frac{\sigma_{R\&R}}{\sigma_{Total}}$$
 *100

- Looks at standard deviations instead of variance
- Measurement System Standard Deviation (R & R) as a percentage of Total Observed Process Standard Deviation
- Includes both repeatability and reproducibility

- Measurement error as a percent of tolerance
- Includes both repeatability and reproducibility
- 5.15 Study Variation = 99%

Distinct Categories

Number of Distinct Categories =

$$2*\left[\begin{array}{c} \sigma_{\text{Process Output}}^2 \\ \sigma_{\text{R\&R}}^2 \end{array} \right]$$

- Number of divisions that the Measurement System can accurately measure across the process variation
- How well a measurement process can detect process output variation--process shifts and improvement
- Less than 5 indicates Attribute conditions

Acceptability Summary

Tabular Method

Desirable to Have All 4 Indicators Say "Go"

Data Collection, Step 4: Begin the Data Collection

Goal

To ensure a smooth start-up of data collection

Data Collection, Step 5: Continue Improving Measurement Consistency and Stability

Goal

 To check that data collection procedures are being followed and that changes are made as necessary to adapt to changing conditions

A Final Note: Do You Really Need New Data?

- Data collection can be time-consuming and expensive
- Before you collect new data, you may want to:
 - See if you have existing data that fits your needs—but use with caution
 - Use **observation** of the workplace as a way to gather information

Data Analysis I

Identifying Patterns over Time

You Are Here

Goals

- Given a situation involving a specific product or service, explain the customer's view of quality in terms of the Taguchi Loss Function
- Differentiate between common- and special-cause variation and select an appropriate response to each
- Given a set of data and an improvement problem, determine whether or not to use a time plot or control chart
- Given a set of data and an improvement problem, create and interpret a time plot using the run chart rules
- Given a set of data and an improvement problem, create and interpret an individuals control chart

Case Study: Website Hits

- The Information Services manager for a small company was told that the preceding month the new website had gotten 79 hits/day early in the month and 135 hits/day near the end of the month
 - His questions:
 - Was the 79 more typical? Or the 135? Was there a clear trend upwards?
 - How does looking at the data this way help?
 - His staff charted the hits/day for June

Data Analysis II

Looking for Patterns Not Related to Time

Goals

Given a set of data and an improvement problem:

- Determine whether or not to use a Box plot
- Determine whether or not to use a Pareto chart
- Create and interpret a Box plot
- Create and interpret a Pareto chart

Studying the Distribution of Numeric Data

Minitab Exercises

Part 1: Histograms, Box Plots

Types of Frequency Plots

Box Plots—Shorthand Histograms

Box plot and dot plot of the same sets of data

Advantages of Box Plots

- Box plots let you look at the shape, center, and spread of many sets of data at the same time
- 4000 This allows you to look for similarities 3000 2000 **Long** 2000 **Long** 1000 and differences across processes or strata 0 Mon Tue Wed Thu Fri Day o Wk
- These data show the daily volume of paper produced at a paper mill, stratified by day of the week
- What conclusions do you draw?

Minitab Exercises

Data Analysis II, Part 2: Pareto Charts

Pareto Charts: Uses

- Understand the pattern of occurrence for a problem
- Judge the relative impact of various parts of a problem
- Track down the biggest contributors to a problem
- Decide where to focus efforts

WORK LESS ACHIEVE MORE

The Pareto Principle

- The Pareto principle, often called the "80/20 rule," says that, in many situations, roughly 80% of the problems are caused by only 20% of the contributing factors
- The Pareto principle implies that we can frequently solve a problem by identifying and attacking its "vital few" sources

Examples of Pareto Charts

Determining Process Sigma Level

Goals

- Explain the value of measuring process performance
- Understand the various ways to measure process performance
- Calculation of Sigma level using DPMO method
- Automated Sigma level calculator

Process Yield

Actual Count Method

- It involves simple and straightforward counting
- However, there must be at least five units in each category:
 - Usually there is no problem finding five good units
 - When quality is already good, large sample sizes may be required in order to find five bad units

Defects and Defectives

Unit: The item produced or processed

Defective: <

A unit of (unsalable) output that contains one or more defects

Defect: A feature that does not meet customers' requirements

Difficulty: Multiple Defects per Unit?

Sigma Level Calculation

Unit: the item produced or processed

Defect: any event that does not meet the specification of a CTQ as defined by the customer

Form

Critical field

with missing Information

Calculate process sigma : formula

Calculate the number of Defects Per Million Opportunities

(No. of Defects)

DPMO =

x 1 000 000

No. Of Units x No. of opportunities

In the Sigma table, look at the Sigma value relating to the DPMO determined

www.anexas.net

Sigma Level Table

Long term Yield	Process Sigma	Defects per 1,000,000	Long term Yield	Process Sigma	Defects per 1,000,000
Rendement Long terme	Sigma du processus	Défauts par 1.000.000	Rendement Long terme	Sigma du processus	Défauts par 1.000.000
99.99966%	6.0	3.4	93.320%	3.0	66,800
99.9995%	5.9	5	91.920%	2.9	80,800
99.9992%	5.8	8	90.320%	2.8	96,800
99.9990%	5.7	10	88.50%	2.7	115,000
99.9980%	5.6	20	86.50%	2.6	135,000
99.9970%	5.5	30	84.20%	2.5	158,000
99.9960%	5.4	40	81.60%	2.4	184,000
99.9930%	5.3	70	78.80%	2.3	212,000
99.9900%	5.2	100	75.80%	2.2	242,000
99.9850%	5.1	150	72.60%	2.1	274,000
99.9770%	5.0	230	69.20%	2.0	308,000
99.9670%	4.9	330	65.60%	1.9	344,000
99.9520%	4.8	480	61.80%	1.8	382,000
99.9320%	4.7	680	58.00%	1.7	420,000
99.9040%	4.6	960	54.00%	1.6	460,000
99.8650%	4.5	1,350	50%	1.5	500,000
99.8140%	4.4	1,860	46%	1.4	540,000
99.7450%	4.3	2,550	43%	1.3	570,000
99.6540%	4.2	3,460	39%	1.2	610,000
99.5340%	4.1	4,660	35%	1.1	650,000
99.3790%	4.0	6,210	31%	1.0	690,000
99.1810%	3.9	8,190	28%	0.9	720,000
98.930%	3.8	10,700	25%	0.8	750,000
98.610%	3.7	13,900	22%	0.7	780,000
98.220%	3.6	17,800	19%	0.6	810,000
97.730%	3.5	22,700	16%	0.5	840,000
97.130%	3.4	28,700	14%	0.4	860,000
96.410%	3 .3	35,900	12%	0.3	880,000
95.540%	3.2	44,600	10%	0.2	900,000
94.520%	3.1	54,800	8%	0.1	920,000

Automated Sigma Level Calculator given in Template

Double click on the spreadsheet and enter data in the the shaded cells.

Define the following

CTQ:	your customer CTQ
Target:	your customer required target
Defect:	Describe here how you would identify a defect
Unit:	How do you define a unit
Opportunity:	What is the rationale behind the # of opportunities

DPMO

		enter
1 Number Of Units Processed	N=	100
2 Total Number Of Defects Made (Include Defects Made And Later Fixed)	D=	20
3 Number Of Defect Opportunities Per Unit	O=	4
4 Solve For Defects Per Million Opportunities		50000
5 Sigma will calculate	Sigma=	3.14

Some Rules for Counting Opportunities

- To facilitate before/after comparisons:
 - Use the same opportunity definitions as have been used in the past, provided they are operational
 - Keep the same number of opportunities per unit

DPMO: Making DPO "Visible"

- Defects per million opportunities (DPMO)
- This is "scaling up" to make the number "visible"

Process Yield: Continuous Variables (Actual Count)

- For continuous variables, we have two ways to calculate yield:
 - The first is simple and straightforward counting, as before
 - But there must be at least five units in each category (in spec and out of spec):
 - Usually there is no problem finding five units in spec
 - When quality is already good, larger sample sizes may be required to find five units that are out of spec

Process Capability Indices

Capability Indices

- **Specification limits:** what the process must do
- Statistical distribution: what the process can do
- The collision: when what we can do is not as good as what we must do:

Design Capability Index Cp: Example

- Specification limits: 10–42 psi seal strength
- Process standard deviation: s = 10

Design Capability Index Cp: Example, cont.

Cp = 0.67

- Cp < 1 means the distribution does not fit between the specification limits
- Cp = 1 means it fits (except for the tails)
- Cp = 1.33 means the distribution occupies three-quarters of the tolerance range
- Cp = 1.67 means the distribution occupies 60% of the tolerance range
- Cp = 2.00 means the distribution occupies half the tolerance range

Difficulty: What If the Process Is Off-Centered?

- Cpk takes the targeting (mean) of the process into account:
 - Distance from the mean to the nearest spec limit
- Cpk = min{Cpu, Cpl} where Cpu and Cpl are calculated for the upper limit and lower limit, respectively

Process Capability Index Cpk: Example

- Specification limits: 5–25 cm thickness
- Process mean: X = 10
- Process standard deviation: s = 5

- Calculate for upper limit (Cpu) and lower limit (Cpl)
 - Cpk is the minimum of the two

Process Capability Indices

Drawbacks of Capability Indices

- They apply only to continuous variables:
 - There is no index for discrete variables
- One index number per variable:;
 - There is no "overall index"
- Assumes Normal distribution

TDU: Total Defects per Unit

- Calculate proportion out of spec for each continuous quality
- Calculate DPU for all discrete qualities combined
- Add them together:

Bag thickness:	0.005	
Bag strength:	0.002	
Discrete DPU:	0.010	
TDU:	0.017	

Rolled throughput yield: RTY = e-TDU:

RTY = exp (-0.017) = 0.983 = 98.3%

One Last Difficulty: Process Shift

- Normal curve percentiles assume no shift in the mean
 - But even well-controlled processes experience some shift:

- **Short-term variation:** variation from cycle to cycle of process
- **Long-term variation:** includes time-to-time shifting of process:
 - Typically greater than short-term variation
- Magnitude of difference is the "shift"

Long-Term Variation vs. Short-Term Variation

- Long-term variation is the standard deviation of an entire data series over "a reasonable period of time"
- **Short-term variation** can be calculated in three ways:
 - Serial production: moving ranges

Mass production: subgroup ranges

 Selecting time periods in a data series when the process seems especially stable

www.anexas.net

Effect of Long-Term Variation on Yield

 We need to evaluate the process performance, taking longterm shift into account

Process Performance vs. Process Capability

- Process performance index uses the same formulas:
 - But with long-term standard deviation instead of short-term

Anexas Consultancy Services

Sigma Performance Level

Sigma Performance Level

- Sigma performance level is an all-inclusive process/product performance indicator figure
 - Includes capability and shift
 - Covers discrete and continuous variables
- Sigma performance level = 3*Cpk
- Sigma short-term performance level = Z-score + 1.5
- Even if dealing with discrete variables, we use the Zscore that corresponds with the yield
 - This gives us the capability if there were no shift
- Add 1.5 to the Z-score as a "standard amount of shift"

Calculating Process Performance

- All of these calculations have been automated for convenience
- Open the Excel file: <u>PrCapCal</u>
- Go to the sheet: Method 1: Yield and Sigma

Interpreting the Excel Spreadsheet

Method 1: Yield and Sigma

1. Determine number of de per unit	efect opportunities O =
2. Determine number of ur	nits processed N =
3. Determine total number made (include defects m	of defects D = ade and later fixed)
4. Calculate Defects Per C	pportunity DPO = $\frac{D}{N \times O}$ =
5. Calculate Yield	Yield = (1 – DPO) x 100 =
6. Look up Sigma in the Pr	ocess Sigma Table Process Sigma =

Interpreting the Excel Spreadsheet, cont.

Interpreting the Excel Spreadsheet, cont.

Looking at Sigma and Shift

www.anexas.net

Exercise: Calculating Yield

Objective: Practice using Method 1 to calculate yield:

- Open *PrCapCal* Excel Spreadsheet
- Go to Method 1: Yield & Sigma

Instructions:

- Compute the yield for each of the following situations:
 - 5000 units, 1 opportunity per unit, 250 defects
 - 187 units, 3 opportunities per unit, 209 defects
 - 1000 units, 21 opportunities per unit, 15 defects
- A table has been provided below to aid in your calculations

Time: 5 minutes

Exercise: Calculating Yield, cont.

Objective: Practice using Method 2 to calculate yield:

- Open *PrCapCal* Excel Spreadsheet
- Go to Method 2: Process Capability

Instructions:

- Calculate yield for the situations described below
- Data are roughly Normally distributed:

X = 28	s = 2.9	USL = 30	LSL = 25
X = 50	s = 10	USL = 35	LSL = none
X = -4.7	s = 13	USL = 15	LSL = -15

Time: 5 minutes

Summary

- Yield: Actual count method: 1 p:
 - Difficulty: Multiple defects in a unit
- DPU: D/N:
 - Difficulty: Comparing processes with different complexities
- Opportunity-based yield: 1 D/(N*O):
 - Difficulty: Small sample sizes typical of continuous variables
- Yield: Normal approximation method: Cp:
 - Difficulty: Non-Normal data (transformations not covered)
 - Difficulty: Process is off-centered

Summary, cont.

- Capability index: Cpk:
 - Difficulty: Process shift
- Performance index: Ppk:
 - Difficulty: Combining discrete and continuous
- Sigma performance level

Anexas Consultancy Services

Process/Product Performance Indicators for Efficiency

Cycle Time Overall Equipment Effectiveness Cycle Time: Little's Law

$\label{eq:cycleTime} \textbf{CycleTime} = \frac{\textbf{Work in Process}}{\textbf{Exit Rate}}$

- Exit rate is the count of how many units leave the system in a given time
- Work in process is the count of how many units are in the process at a given time
- **Cycle time** should match the "heartbeat" of the process:
 - Called takt time
 - This enables one-piece flow, just-in-time, and other benefits

Example of Little's Law

- The Procurement Department processes 14 orders per hour:
 - There is a backlog of 74 unprocessed orders
 - A 75th order is put into the queue
 - How long must the 75th order wait to be processed?

$5.4 \, Hours = \frac{75 \, Orders}{14 \, Orders \, per \, Hour}$

Overall Equipment Effectiveness (OEE)

- OEE measures three main equipment production process components:
 - Availability of equipment:
 - Breakdown loss
 - Setup and adjustment loss
 - Performance efficiency:
 - Minor stoppage loss
 - Idling loss
 - Reduced speed loss
 - Rate of quality products:
 - Quality defect and rework loss

Calculating Availability

Availability = $\frac{\text{Actual operating time}}{\text{Planned operating time}} \times 100$

- Planned operating time:
 - The daily or monthly time available for operation minus all forms of scheduled stops (e.g., breaks in the production schedule, lunch, rest breaks, stoppage for routine maintenance, team meetings, training, etc.)
- Downtime:
 - The total time taken for unscheduled stoppages (e.g., breakdowns, retooling, changeover, adjustments, changes, etc.)
- Actual operating time:
 - The amount of time the machine is not idle
 - Equals: Planned operating time Downtime

Calculating Performance Efficiency

Ideal amount processed:

- The ideal amount that can be processed per time unit (minute, hour, etc.) as determined by equipment design specifications
- Times the operating time (in minutes, hours, etc.)
- Processed amount:
 - The actual amount processed

Calculating Rate of Quality Products

Rate of quality products

- = (Actual amount processed Amount defective) Actual amount processed × 100
- Amount processed:
 - The total amount of product, good or bad, produced in a given amount of time
- Amount defective:
 - The total processed amount that contains defects
- Notice that this is the **first-time yield** for that equipment

OEE: Establishing the Baseline

OEE = Availability

× Performance efficiency

× Rate of quality products

Why Do We Need to Measure OEE?

- Calculates actual effectiveness of equipment
- Accounts for loss factors
- Provides data for improvement
- Makes work easier
- Helps to understand actual plant capacity
- Helps to develop accurate capacity plans
- Helps to attain a world-class benchmark and beyond

Calculating OEE

consultancy

Exercise: Calculating OEE

Objective: Practice calculating overall equipment effectiveness

Instructions:

- Work in pairs or trios
- Using the data provided below, calculate the OEE

Time: 10 minutes

Answer: Calculating OEE

Summary

- Measures of effectiveness:
 - FTY: First-time yield
 - Cpk: Capability index
 - Sigma performance level
- Measures of efficiency:
 - PCT: Process cycle time
 - OEE: Overall equipment effectiveness

Goals Achieved in this Module

- Explain the value of measuring process performance
- Understand the various ways to measure process performance
- Calculation of Sigma level using DPMO method
- Automated Sigma level calculator

MEASURE: The Current Situation

Review

You Were Here—MEASURE

www.anexas.net

MEASURE Checklist

- By the end of the MEASURE phase, you should have answered the following questions and have data to demonstrate the following points—please check to be sure that you do:
 - What problems are occurring?
 - Under what conditions do these problems occur?
 - What specifically is the main problem or problems?
 - Focused problem statement
 - What time-related patterns did you see?
 - What special causes of variation were uncovered?
 - Have they been addressed?

MEASURE Checklist, cont.

- By the end of the MEASURE phase, you should have answered the following questions and have data to demonstrate the following points—please check to be sure that you do, cont.:
 - What patterns appeared in the plots of the data?
 - What is the current process sigma for your process?
 - What did the process map of the process reveal?
 - Which bottlenecks appeared?
 - What are the current process parameters?
 - Cycle time, output, etc.

ANALYZE: Analyze to Identify Causes

Overview

You Are Here—ANALYZE

www.anexas.net

ANALYZE: Analyze to Identify Causes

- Goal:
 - Identify root causes and confirm them with data
- Output:
 - A theory that has been tested and confirmed

Approach to ANALYZE

Identifying Potential Causes

You Are Here

- Given a focused problem (the output of the MEASURE phase), construct a cause-and-effect diagram that demonstrates causal thinking
- Given a focused problem, create a tree diagram with at least four levels of depth for at least one path

The Why-Why Technique

- To push for root causes, start with your focused problem and then ask "Why" several times
- Example:
 - Focused problem: Customers complain about waiting too long to get connected to staff during lunch hours

Verify each assumption on the spot—where the activity in question is taking place

Organizing and Prioritizing Potential Causes

Looking for Relationships

 Graphic displays can help you structure possible causes to find relationships that will shed new light on your problem

Prioritizing Input Variables

Identifying Potential Causes: Review

- Start with a narrow problem definition
- Brainstorm ideas
- Arrange ideas on a cause-and-effect or tree diagram
- Use the Effort × Impact diagram to narrow the scope of your investigation

Introduction to Hypothesis Testing

Why Learn Hypothesis Testing?

To identify sources of variability using historical or current data:

- Passive: a process is sampled or historic sample data is obtained
- Active: a modification is made to a process and then sample data is obtained

Provides objective solutions to questions which are traditionally answered subjectively

What is Hypothesis Testing?

- A procedure for testing a claim about a population parameter
- Answers practical questions such as:

What is Hypothesis Testing?

Example:

Practical Problem

Is there a real difference between production costs of Server 1 and Server 2?

There is no evidence of significant difference between production costs of Server 1 and Server 2

What is Hypothesis Testing?

- In hypothesis testing, relatively small samples are used to answer questions about population parameters (inferential statistics)
- There is always a chance that the selected sample is not representative of the population; therefore, there is always a chance that the conclusion obtained is wrong
- With some assumptions, inferential statistics allows the estimation of the probability of getting an "odd" sample and quantifies the probability (p-value) of a wrong conclusion

Parameters Versus Statistics

- Population parameters (values) are fixed, but unknown
- Sample statistics are used to estimate or infer population values

Hypotheses are statements about population parameters, not sample statistics

Hypothesis Tests

Υ	X	Hypothesis Test
Continuous / Variable Data	Attribute / Discrete Data	1-z, 1-t, 2-t, paired t, ANOVA
Attribute / Discrete Data	Attribute / Discrete Data	1-p, 2-p, Chi Square
Continuos / Variable Data	Continuos / Variable Data	Correlation, Regression, Multiple Regression
Attribute / Discrete Data	Continuous / Variable Data	Logistic Regression

Significance Level

Goal: show observed values are so unlikely to come from the same population, that H_0 must be wrong

However, even if the values are unlikely there is still a chance that they may occur. The chance they may occur is α .

This is called the significance level (α)

There is an α % chance that we are wrong when we say that Server 1 is more efficient than Server 2

α (Alpha) - Simplified Perspective

Null Hypothesis (H_o) assumed true

e.g., defendant assumed innocent

Prosecuting attorney must provide evidence beyond reasonable doubt that assumption is not true

Reasonable doubt = α

Alpha (α) & Beta (β) Risk

- α-risk
- Risk of finding a difference when there really isn't one
 Type I error or Producers' risk
- β-risk
- Risk of not finding a difference when there really is one
 Type II error or Consumers' risk

Truth Table: α and β Risk

Decision

What is p - value?

- The probability of getting sample statistics like the one we observed if our null hypothesis is true
- The chance you will be wrong if you rejected null hypothesis
- Based on an assumed or reference distribution (Z, t, F, etc.)

Decision Criteria

p < α , reject the null hypothesis p > α , fail to reject the null hypothesis

Hypothesis Tests

Hypothesis Tests

Υ	X	Hypothesis Test
Continuous / Variable Data	Attribute / Discrete Data	1-z, 1-t, 2-t, paired t, ANOVA
Attribute / Discrete Data	Attribute / Discrete Data	1-p, 2-p, Chi Square
Continuos / Variable Data	Continuos / Variable Data	Correlation, Regression, Multiple Regression
Attribute / Discrete Data	Continuous / Variable Data	Logistic Regression

Hypothesis Testing of Mean

Steps

Steps in Hypothesis tests:

1. State the null hypothesis (Ho)

Null Hypothesis is:

All means are equal (1-z, 1-t, 2-t, paired t, ANOVA) [Cont- Att]

Y is independent of X (Regression) [Cont –Cont]

Y is not related to X (1 p, 2p, Chi Square) [Att-Att]

Y is not related to X (Binary Logistic Regression) [Att-Cont]

2. State the alternative hypothesis (Ha)

At least one mean is different(1-z, 1-t, 2-t, paired t, ANOVA)

Y is dependent on X (Regression)

Y is related to X (1 p, 2p, Chi Square)

Y is related to X (Binary Logistic Regression) [Att-Cont]

3. Choose alpha value (α = .05). Also known as level of significance. Confidence Level = 1- α

4. Collect data

Steps

Steps in Hypothesis tests:

- 5. Choose appropriate hypothesis test
- 6. Get p value
- 7. If p is < 0.05 , Reject Ho
 - If p is > 0.05, Accept Ho

Remember :

If p is low Ho must go

If p is high, Ho must fly

Why Learn Hypothesis Tests of Mean?

Make data driven decisions with defined confidence Determine if a statistically significant difference of means exists between:

- A sample and a target
- Two independent samples
- Paired samples

What are Hypothesis Tests of Mean?

Test Method for analyzing the differences between:

- 1 Sample Z a sample mean and a target value when population standard deviation is known
- 1 Sample t a sample mean and a target value when population standard deviation is not known
- 2 Sample t means obtained from two independent sample
- Paired t mean differences obtained from paired samples
- Note: Above tests are used when the dependent variable (response) is continuous and the independent variable (factor) is discrete

www.anexas.net
Anexas Consultancy Services

1 Sample z Test

Single Mean Comparison

Business Process Example: Rising Transaction Costs

A financial institution is concerned about rising costs per teller transaction. Leadership of the institution wants to take appropriate action if the population average cost per teller transaction is greater than \$1.40.

A random sample of 45 costs per teller transaction produced an average value of \$1.45. It is known from previous experience that the population standard deviation of the transaction cost is approximately \$0.32.

Analyze the sample data from the file *Tellercost.mtw* and determine if we have evidence to show that the population mean cost per teller transaction cost is greater than \$1.40.

Example: Rising Transaction Costs

Practical Problem

- \checkmark Did the average cost per transaction increase?
- \checkmark Is the average cost per transaction greater than \$1.40?

Statistical Problem

- ✓ Is there a shift in the mean cost per transaction from the historical average?
- ✓ Null hypothesis: Average cost is \$1.40
- ✓ Alternate hypothesis: Average cost is greater than \$1.40
- ✓ Is there evidence (at a significance level of 5%) to show that the average cost per transaction has increased? Otherwise we maintain the current belief i.e., the null hypothesis

Example: Rising Transaction Costs

• State the hypotheses and significance level

H_o: μ = \$1.40H_a: μ > \$1.40α = 0.05

• What hypothesis test is appropriate?

These hypotheses deal with mean values

Only one factor for examination – rising transaction cost

Comparing population mean against a target value using one sample data

Data follows a normal distribution

 σ known, \$0.32

Use 1-Sample Z-Test

Example: Rising Packing Costs

Practical and Graphical

- Open the file
 Tellercost.mtw
- What practical questions do you have about this data?
- Evaluate descriptive statistics

Descriptive Statistics

Example: Rising Packing Costs

Tool Bar Menu > <u>Stat > Basic Statistics > 1-Sample Z</u>

Analysis through Minitab

Example: Rising Transaction Costs

One-Sample Z: Cost

Test of mu =	1.4 vs	mu > 1.4		
The assumed	sigma =	0.32		
Variable	N	Mean	StDev	SE Mean
Cost	45	1.4506	0.3247	0.0477
Variable	95.0%	Lower Bound	Z	P
Cost		1.3721	1.06	0.145

Interpretation:

p-value = 0.145 Since p-value > α -value (0.05) fail to reject H_o Infer H_o true: not enough evidence that average teller transaction cost is greater than \$1.40

1-Sample Z test Exercise: Projector Lamps

A company that manufactures lamps for computer projectors, Sigma Lamps, Inc. (SLI), has received numerous complaints from customers concerning the quality of recently purchased lamps.

Specifically, the average life of new lamps is said to be less than previous purchases. Historical data shows that the measure of lamp life is approximately normally distributed with a mean of 1000 hours and standard deviation of 40 hours. Life information from a random sample of 25 lamps from a recent production batch is given in *Lamps.mtw.*

Are the concerns of SLI's customers valid?

1-Sample Z-Test Exercise: Ohms

A customer believes that the resistors they purchased and installed in their instrument have higher average resistance values than required. They sent a representative sample of 10 resistors back for testing.

The resistor data (ohms) are included in file **Ohms.mtw**

The resistors are supposed to be 60.5 ohms. Does the customer have a legitimate complaint? The population standard deviation (σ) of resistors is 0.81 ohms.

Anexas Consultancy Services

1 Sample t Test

Single Mean Comparison

1-Sample t-Test

- Hypothesis test about the unknown population mean using information from one sample
- Population standard deviation not known and distribution is normal

Note: Normality assumptions relaxed when the number of sample observations is large (generally true when sample size >30).

Business Process Example: Delinquent Mortgages

A bank holds 1432 delinquent mortgages on residential properties. The Black Belt investigating the loan process wants to know if the mean appraised value (current) of the properties is greater than \$175,000.

A preliminary random sample of 38 delinquent properties were appraised. The sample produced a mean appraised value of \$181,769.

Use the data in *mortgage.mtw* to determine if there is enough evidence that population mean appraised value is greater than \$175,000?

Practical Problem

 Is the mean appraised value of all 1432 properties higher than \$175,000 in spite of the sample mean value of \$181,769?

Statistical Problem

- Is the population mean of appraised value greater than \$175,000?
- Null hypothesis: mean appraised value of properties = \$175,000
- Alternate hypothesis: population average value is greater than \$175,000
- Is there sufficient evidence to show that the population average of properties is greater than the \$175,000 at a significance level of 5%? Otherwise we will maintain the current belief - i.e., the null hypothesis

State the hypotheses and significance level

H_o: μ = \$175,000 H_a: μ > \$175,000 α = 0.05

What hypothesis test is appropriate?

- These hypotheses deal with mean values
- Only one factor for examination appraised value
- Comparing population mean against a target value using one sample data
- Data follows a normal distribution
- Population standard deviation NOT known
- Use 1-sample t-test

Practical and Graphical

- Open the file
 Mortgage.mtw
- What practical questions do you have about this data?
- Evaluate descriptive statistics

Descriptive Statistics

Tool Bar Menu > <u>Stat</u> > <u>Basic</u> Statistics > <u>1</u>-Sample t

Analysis through Minitab

One-Sample t for the I	Mean		×
	One or more sar	mples, each in a	column 💌
	Appraisal		^
			~
	♥ Perform hypot Hypothesized	thesis test mean: 175000	
Select	_	Optio <u>n</u> s	<u>G</u> raphs
Help	_	<u>о</u> к	Cancel

Choose greater than for Alternative (H_a : μ > \$175,000)

One-Sample t: Option	ns	×
Confidence level:	95.0	
<u>A</u> lternative hypothesis:	Mean > hypoth	esized mean 💌
Help	<u>o</u> k	Cancel

One-Sample T: Appraisal

Test of mu = 175000 vs mu > 175000

Variable	N	Mean	StDev	SE Mean
Appraisal	38	181769	36719	5957
Variable	95.0%	Lower Bound	т	P
Appraisal		171720	1.14	0.132

Interpretation:

- p-value = 0.132
- Since p-value > α -value (0.05) fail to reject H_o
- Infer H_o true: not enough evidence that average appraised value of properties with delinquent mortgages is higher than \$175,000

Industrial Process Exercise: Fuel Additive

An oil company has advertised that their new product, a fuel additive, can significantly enhance automobile fuel economy. They claim that on average automobiles can improve fuel economy by 2.3 miles per gallon. You are asked to investigate their claim.

As part of your investigation you have collected fuel economy information from 112 random samples of automobiles and found that on average the mileage enhancement for this sample was 2.03 miles per gallon (mpg) with a standard deviation of 1.125 mpg. You are concerned that the average value for your sample is less than the manufacturer's claim. The data is given in *mileage.mtw.*

Is the sample average of 2.03 mpg enough evidence to show that the manufacturer's claim is invalid?

Perform a statistical test at 5% significance level.

Answer to exercise: Fuel Additive

One-Sample T: mpg change Test of mu = 2.3 vs mu < 2.3

Variable	N I	Mean	StDev	SE Mean
mpg change	112 2	2.031	1.125	0.106
Variable	95.0% Uppe	er Bound	Т	Р
mpg change	2	2.207	- 2.53	0.006

Interpretation:

- p-value is 0.006, suggesting that if the true average was still 2.3 mpg, only about 0.6% of the time we would expect to see a sample average of 2.31 mpg or less
- Since p- value < α -value (0.05), reject H_o
- Infer H_a true: additive does not increase fuel economy by 2.3 mpg
- We have evidence against the manufacturer's claim

www.anexas.net

Business Process 1-Sample t-Test Exercise

A rental car company is concerned that its annual repair costs per car on its fleet of full size cars are increasing. To get an understanding of where the costs are, a random sample of 28 full size cars were selected and its repair costs analyzed.

The sample data *Carrepair.mtw* contains repair costs per car for last year.

Test the hypothesis that the mean repair costs per car for last year is greater than \$1275.

Industrial Process 1-Sample t-Test Exercise

A customer believes that the resistors they purchased and installed in their instrument have higher average resistance values than required. They sent a representative sample of 10 resistors back for testing.

The resistor data (ohms) are included in file **Ohms.mtw**.

The resistors are supposed to be 60.5 ohms. Does the customer have a legitimate complaint? The population standard deviation (σ) of resistors is not known.

Anexas Consultancy Services

2 Sample t Test

Two Sample Comparison

2-Sample t-Test

- Hypothesis test about the difference between two population means using two samples
- Distributions are normal
- Two independent samples
 - Can be of different size

Business Process Example: Teller vs. ATM Costs

(A) As part of an investigation to study the transaction costs of tellers versus ATMs, a bank has collected a random sample of 45 teller transaction costs and 53 ATM transaction costs.

The data is given in file *ATMTeller.mtw*.

Perform a hypothesis test to determine if average value teller transaction cost is higher than ATM transaction cost.

(B) Solve the same problem and perform a hypothesis test to determine if average value teller transaction cost is higher than ATM transaction costs by at least \$0.35.

Example: Teller vs. ATM Costs (Part B Solution)

Practical problem

–Is average cost of teller transactions higher than average cost of ATM transactions by at least \$0.35?

•Statistical problem

–Is the population mean for teller transaction cost higher than the population mean of ATM transaction costs by at least \$0.35?

–Null hypothesis: difference between mean value of teller transaction costs and mean value of ATM transaction costs is equal to \$0.35

–Alternate hypothesis: difference between mean value of teller transaction costs and mean value of ATM transaction costs is greater than \$0.35

Example: Teller vs. ATM Costs

• State the hypotheses and significance level

H_o:
$$\mu_{\text{Teller}}$$
 - μ_{ATM} = \$0.35
H_a: μ_{Teller} - μ_{ATM} > \$0.35
α = 0.05

- What hypothesis test is appropriate?
 - These hypotheses deal with mean values
 - Only one factor for examination transaction cost
 - Comparing population means based on two independent sets of sample data
 - Samples are normally distributed
 - Use 2-Sample t-Test

Example: Teller vs. ATM Costs

Tool Bar Menu > <u>Stat</u> > <u>Basic</u> Statistics > <u>2</u>-Sample t

Analysis through Minitab

C1 Teller C2 ATM	Each sample is in its own column	
	Sample 1: Teller	Iwo-Sample t: Options
	Sample 2: ATM	Difference = (sample 1 mean) - (sample 2 mean)
		Confidence level: 95.0
		Hypothesized difference: 0.35
		Alternative hypothesis: Difference > hypothesized difference
Select	Options Graphs	Assume equal variances
Help	OK Cancel	Hein OK Cancel
Help		Help <u>O</u> K Cancel

Example: Teller vs. ATM Costs

Two-sample T for Teller vs ATM

	Ν	Mean	StDev	SE Mean				
Teller	45	1.451	0.325	0.048				
ATM	53	0.985	0.210	0.029				
Differe	nce =	= mu Teller ·	- mu ATM					
Estimat	e foi	difference	0.4654	ł				
95% low	er bo	ound for dif:	ference:	0.3716				
T-Test	of di	ifference = ().35 (vs	>): T-Val	Lue = 2.05	P-Value =	0.022	DF = 72

Interpretation:

-p-value 0.022

-Since p-value < α -risk (0.05), reject the null hypothesis

-The difference between Teller cost and ATM costs is greater than \$0.35

Industrial Process Exercise Alloy Tensile Strength

Your Purchasing department is faced with a dilemma in choosing between two suppliers of alloy bars for your manufacturing operation.

Decisions must be made based on the average tensile strength and price of the supplied alloy bars. Your potential supplier B claims that the tensile strength of their bars is comparable to your current supplier A.

Moreover, bars from supplier B are cheaper than those from supplier A. If there is no difference between the tensile strength of alloy bars from the two companies you would consider switching to supplier B based on price.

Industrial Process Example Alloy Tensile Strength

To help make decisions you have measured the tensile strength of 50 samples of alloy bars from each supplier. The results are given in the file *Alloy.mtw.* Summary of sample statistics are as follows: Supplier A: average tensile strength = 42.07 ksi, standard deviation = 2.91 ksi; Supplier B: average tensile strength = 41.38 ksi, standard deviation = 2.41 ksi

Is there a difference in average tensile strength of alloy bars from Supplier A and B? Would you recommend switching to Supplier B? What other questions do you have about the decision making process?

Note: Other things being equal, higher tensile strength is preferred.

Example: Alloy Tensile Strength

- Practical problem
 - Is there a difference in alloy tensile strength between suppliers?
 - If there is a difference, is it statistically significant?
- Statistical problem
 - Is the population mean for alloy tensile strength from Supplier A different from Supplier B?
 - Null hypothesis: average value of tensile strength for A and B are equal
 - Alternate hypothesis: average value of tensile strength for A and B are not equal
 - Is there evidence to show that the difference between the population average of tensile strength for A and B is not zero when tested at a significance level of 5%? Otherwise we will maintain the current belief - i.e., the null hypothesis

Solution: Alloy Tensile Strength

Two-sample T for SupplyA vs SupplyB

	N	Mean	StDev	SE Mean
SupplyA	50	42.07	2.91	0.41
SupplyB	50	41.70	2.72	0.38

```
Difference = mu SupplyA - mu SupplyB
Estimate for difference: 0.373
95% CI for difference: (-0.745, 1.490)
T-Test of difference = 0 (vs not =):T-Value = 0.66 P-Value = 0.510 DF = 97
```

Interpretation:

p-value 0.510

If the difference between population averages was still zero, about 51% of the time expect to see a sample average difference as high as 0.373 ksi. In other words, if we reject the null hypothesis we would be wrong about 51%. This is more than the risk we are willing to take.

Example: Alloy Tensile Strength

Interpretation (continued):

Since p-value is higher than the α -risk (0.05), fail to reject the null hypothesis in favor of the alternative

The difference between tensile strength of alloys from Supplier A and B is not statistically significant

95% Confidence interval for difference between average alloy tensile strength from A and B is -0.745 and 1.490; since interval contains zero, insufficient evidence that the alloys are different

Anexas Consultancy Services

Paired t Test

Paired Comparison

Paired t-Test

- Test for mean difference between pairs of samples
- Differences between matched pairs is normally distributed
- Each datum has a dependent mate
- Increased sensitivity over 2-Sample t-Test
- Effectively used to block out excess variability

Paired t-Test - Procedure

- State the practical problem
- State the statistical problem
 - Generate the null and alternative hypotheses

For example, $H_o: \mu_d = D_0$ or $\mu_d \le D_0$

VS $H_a: \mu_d > D_0$

D₀ represents hypothesized mean difference of pairs

- Calculate the test statistic t_{observed}
- d and s_d are sample mean and standard deviation of 'n' differences

Paired t-Test - Procedure

- Determine the critical value (tn-1, α) of test statistic
- To test H_a : $\mu_d > D_0$, reject H_o if $t_{observed} > t_{n-1, \alpha}$
- To test H_a : $\mu_d < D_0$, reject H_o if $t_{observed} < -t_{n-1, \alpha}$
- To test H_a: $\mu_d \neq D_0$, reject H_o if t_{observed} < t_{n-1, \alpha/2} or t_{observed} > t_{n-1, \alpha/2}
- Reject the null hypothesis if p-value < α -value
- Ensure that none of the assumptions for test are violated
- Translate statistical conclusion into practical solution

Industrial Process Example: High Performance Tires

R&D department of Sigma Tires, Inc. has invented a new brand of tires (Brand X) that can potentially offer superior fuel economy. Based on tests performed under laboratory conditions the Engineering department believes that use of Brand X tires on the average improves the fuel economy by 0.3 mpg.

As part of the next phase of development, Sigma Tires has decided to do further field trials on a fleet of 42 taxis. The test to evaluate fuel economy obtained for Brand X tires as well as regular brand tires is as follows:

Industrial Process Exercise: High Performance Tires

First, all 42 taxis were fitted with Brand X tires and driven over a prescribed course collecting fuel economy information. Then the same taxis were fitted with regular tires and driven once again over the same test course without changing drivers. The results obtained from the test are recorded in the file *Tirebrandx.mtw.*

Sigma Tires would like to know if these tests are consistent with the Engineering department's previous finding that cars equipped with Brand X tires give better fuel economy than those equipped with regular brand tires?

Solution: High Performance Tires

Paired T-Test and CI: BrandX, Regular Paired T for BrandX - Regular

	N	Mean	StDev	SE Mean
BrandX	42	14.420	2.621	0.404
Regular	42	14.072	2.758	0.426
Difference	42	0.3478	0.5327	0.0822

95% lower bound for mean difference: 0.2095 T-Test of mean difference = 0 (vs > 0): T-Value = 4.23 P-Value = 0.000

Interpretation:

- p-value 0.000
- p-value < α -value (0.05), reject H_o
- Infer H_a: Improvement in fuel economy due to Brand X compared to regular brand is statistically significant

Example contd.: High Performance Tires

- Having seen an improvement, Engineering also wants to know if they can say that Brand X tires, on average, improve the fuel economy by 0.3 mpg?
- Practical problem
 - Is the improvement at least 0.3 mpg?
- Statistical problem
 - Is the difference in paired fuel economy greater than 0.3?
 - Null hypothesis: Average value of paired difference is equal to 0.3
 - Alternate hypothesis: average value of paired difference is greater than 0.3
 - Is there evidence to show that population average of paired difference between fuel economy for Brand X and Regular tires is greater than 0.3 when tested at a significance level of 5%? If not we will maintain the current belief - i.e., the null hypothesis

Example: High Performance Tires

Question: Does Brand X improve the fuel economy by more than 0.3 mpg?

State the Hypotheses and Risk

H_o: μ_d = 0.3 H_a: μ_d > 0.3 α = 0.05

<u>C</u> onfidence le	vel: 95.0	
<u>T</u> est mean:	0.3	
<u>A</u> lternative:	greater than 🔻	

Example: High Performance Tires

Paired T-Test and CI: Brand X, Regular Paired T for Brand X - Regular

	N	Mean	StDev	SE Mean
Brand X	42	14.420	2.621	0.404
Regular	42	14.072	2.758	0.426
Difference	42	0.3478	0.5327	0.0822

95% lower bound for mean difference: 0.2095 T-Test of mean difference = 0.3 (vs >0.3): T-Value = 0.5% P-Value = 0.282

Interpretation:

- p-value = 0.282
- p-value > α -value (0.05), fail to reject H_o
- Infer H_a: insufficient evidence to prove Brand X improves the fuel economy by more than 0.3 mpg

Business Process Example: Comparing Analysts

A financial institution wants to compare the predictions of earnings per share (EPS) by two different financial analysts, George and Lisa. The two financial analysts' EPS forecasts for a random sample of 18 fortune 500 corporations are recorded in *FaEPS.mtw.* Financial institution wants to know if there is a difference between the forecasts produced by George and Lisa.

Perform a hypothesis test at 5% significance level to determine if there is a statistically significant difference between the predictions by these analysts.

- Practical problem
 - Is there a difference between the EPS forecasts of two analysts?
 - Is the average value of prediction by one analyst different from the other?
- Statistical problem
 - Is the difference in paired EPS predictions greater than zero?
 - Null hypothesis: mean value of paired difference is zero
 - Alternate hypothesis: mean value of paired difference is not equal to zero
 - Is there evidence to show that population average of paired difference between EPS forecasts by George and Lisa is not zero when tested at a significance level of 5%? If not, we will maintain the current belief - i.e., the null hypothesis

• State the hypotheses and significance level

```
H_{o}: \mu_{d} = 0H_{a}: \mu_{d} \neq 0\alpha = 0.05
```

- What hypothesis test is appropriate?
 - These hypotheses deal with mean values
 - Only one factor for examination EPS forecasts
 - Comparing mean differences of paired sample data
 - Difference between paired data follows a normal distribution
 - Use Paired t-Test

Practical and Graphical

- Open FAEps.mtw in Minitab
- What practical questions do you have about this data?
- What assumptions are used in a Paired t-Test?

Descriptive Statistics

Descriptive Statistics

Practical and Graphical

• Review descriptive statistics of the difference between paired data

Descriptive Statistics

Tool Bar Menu > <u>Stat</u> > <u>Basic</u> Statistics > <u>Paired</u> t

Analysis through Minitab

Paired T-Test and CI: George, Lisa

Paired T for George - Lisa

	N	Mean	StDev	SE Mean
George	18	1.699	0.824	0.194
Lisa	18	1.650	0.972	0.229
Difference	18	0.0491	0.2896	0.0683

95% CI for mean difference: (-0.0949, 0.1931) T-Test of mean difference = 0 (vs not = 0): T-Value = 0.72 P-Value = 0.482

Interpretation:

- p-value 0.482
- p-value > α -value (0.05), fail to reject H_o
- Infer H_o: Difference in EPS forecasts by Lisa and George are not statistically significant

Paired t-Test Exercise

A customer believes that the resistors they purchased and installed in their instrument have higher average resistance values than ordered. They tested a representative sample of 10 resistors and data recorded in column1 (Customer) of file **CSresist.mtw.**

The sample of 10 resistors were sent back to a supplier testing facility. These resistors were tested at the supplier facility and recorded in column2 (Supplier of the file **CSresist.mtw**).

Is the customer's test method comparable to the testing facility? Assume the resistors were tested in the same order, such that 61.3 and 62.1 are the resistance for resistor1, etc.

Anexas Consultancy Services

Comparing Two or More Group Averages

ANOVA

When to Use ANOVA

Variables Road Map

Discussion: How Would You Compare Seven Groups?

- An improvement team wants to compare seven packaging material vendors to see whether there are any significant differences in the average amount of scrap produced among the different materials:
 - How would you make seven comparisons?
 - Can you find the difference of seven items at the same time?

Answers: How Would You Compare Seven Groups?

- Although a dot plot helps us compare seven groups visually, mathematically you can take the difference only between two numbers at a time, not among seven
- If you make pairwise comparisons, two at a time, you would end up doing 21 *t-test*s:
 - This is an inefficient use of time as well as data (to estimate the variance)
 - You also increase the chance of making a Type I error (on at least one of the comparisons)*
- We must find a better way:
 - To compare the groups simultaneously
 - To use all the data efficiently

Analyze Variances Instead of Averages

- There is a statistical test that uses variances to compare multiple group averages simultaneously:
 - ANOVA: Analysis of Variance
- Instead of comparing pairwise averages, it compares the variance between groups with the variance within groups:
 - The between group variance is obtained from the variance s² of the group averages

- The within group variance is obtained from the variance s² among values within each group and then **pooled** (or averaged with appropriate degrees of freedom) **across the groups**
- If the variance between groups is the same as the variance within groups, we say there is no difference among the group averages

Analyze Variances Instead of Averages, cont.

 Here is a plot to help you visualize "between" and "within" variance for seven groups (think of a Normal distribution centered over each line shown)

 In this diagram, the within group variation appears smaller than the between group variation, so the test will probably show that at least one of the groups is different from the rest

Analysis of Variance (ANOVA)

- Obtain the variance between groups: S²_B
- Obtain the variance within groups: S²_w
- If they are about the same, conclude there is no significant difference between groups:
 - Take a ratio: if $\frac{S_B^2}{S_W^2} = 1$ then say there is no difference between group averages
- The ratio of two variances = F-statistic
- We can get a P-value from the F distribution
- Minitab menu:

Stat > ANOVA > One-way

ANOVA Hypothesis

• The null hypothesis:

-
$$H_0$$
: Average A = Average B = Average C = . . .
(or)
No difference among the group averages
(or)
 $S_{Between}^2 = S_{Within}^2$

- The alternative hypothesis:
 - H_a: At least one group average is significantly different from the others

ANOVA Hypothesis, cont.

- If $P \ge 0.05$:
 - Do not reject the H₀
 - There is not enough evidence to say there is a statistically significant difference between any two of the groups
 - If there is a true difference, either the variation is too large or the sample size is too small to detect it
- If P < 0.05:
 - Reject the H_0 , and conclude the H_a
 - At least one of the groups is statistically different from the others
 - Examine confidence intervals to find which of the groups are different (non overlapping)
 - Actions: evaluate importance or size of the difference (is it enough to warrant further action?)

ANOVA

- Analysis of variance (ANOVA):
 - Used to **compare averages** of two or more groups:
 - Assumes variances of each group are the same
 - Also used to **compare variances** of two or more groups:
 - Called the test for equal variances
 - Use this test to check the assumption that variances are the same when comparing averages

Prerequisites for ANOVA

- Every subgroup has a normal distribution
- Subgroups have statistically equal variances
- Residuals are independent and normally distributed about the mean

Anexas Consultancy Services

Hypothesis Testing Exercise

ANOVA Normality Check

ANOVA – Exercise

Data: <u>ScrapAnova.MTW</u>

- Background: The data set contains the amount of scrap (kg) from 15 pieces of material from each of the seven vendors (identified as AG) for a total of 105 production runs on Process X
- An improvement team wants to compare seven packaging material vendors to see whether there are any significant differences in the average amount of scrap produced among the different materials:
 - □ How would you make seven comparisons?
 - □ Can you find the difference of seven items at the same time?

Prerequisites for ANOVA

Normality Check

Graph > Probability plot > (By Vendor)

P-values of all Scrap vendors is more than 0.05,

Data is considered as Normal.

Anexas Consultancy Services

Hypothesis Testing Exercise

ANOVA Test of Equal Variances

Exercise: Test for Equal Variances

- Objective: Practice using Minitab to check whether the variances of several groups are the same
- **Time:** 5 minutes
- Data: ScrapAnova.MTW
- Background:
 - Recall the ANOVA test we did to determine whether material from seven vendors was associated with significantly different average scrap amounts
 - We made an assumption that the variances in the scrap were the same for each vendor when we did the ANOVA
- Instructions: Working alone:
 - 1. Check the assumption of same variances
 - 2. Be prepared to report your conclusions

Answers: Test for Equal Variances

Test for equal variances:

Anexas Consultancy Services

Hypothesis Testing Exercise

ANOVA Residuals for Violations

Answers: Residuals for Violations

There is a straight line through nearly all the points, indicating the residuals are Normal. Examine the extreme points closely. Decide whether to leave them in or take them out.

Residuals vs. fits should not have patterns or extreme outliers. This plot should show a random pattern of residuals on both sides of 0. If a point lies far from the majority of points, it may be an outlier. There should not be any recognizable patterns in the residual plot. For instance, if the spread of residual values tend to increase as the fitted values increase, then this may violate the constant variance assumption.

2. Here again, with the exception of outliers, the residuals look Normal (good).

4. Residuals vs order should be scattered with no pattern. There seems to be a slight pattern (wave or cycle). What variable related to time may be causing this? Try to discover it and add it to the regression analysis. We'll demonstrate how to do this later.

R 01

Anexas Consultancy Services

Hypothesis Testing Exercise

ANOVA

Minitab Follow-Along: ANOVA

 Make a stratified dot plot of the face amount by vendor: Graph > Dotplot > (By Vendor)

2. Get a summary of the data:

Stat > Basic Statistics > Display Descriptive Statistics > (Scrap by Vendor)

Descriptive S	tatistics: Scrap) by Vendor				
Variable	Vendor	N	Mean	Median	TrMean	StDev
Scrap	A	15	5.540	5.700	5.585	1.006
	В	15	7.227	6.900	7.231	1.055
	С	15	6.233	6.100	6.169	1.027
	D	15	6.160	6.100	6.115	0.823
	E	15	5.240	5.300	5.254	0.650
	F	15	4.853	5.000	4.862	0.717
	G	15	5.860	5.800	5.862	0.808
Variable	Vendor	SE Mean	Minimum	Maximum	Q1	Q3
Scrap	A	0.260	3.400	7.100	4.800	6.000
	В	0.272	5.400	9.000	6.300	8.200
	С	0.265	4.900	8.400	5.200	6.700
	D	0.212	5.000	7.900	5.500	6.600
	E	0.168	4.100	6.200	4.700	5.800
	F	0.185	3.600	6.000	4.200	5.500
	G	0.209	4.600	7.100	5.200	6.700

3. Do an analysis of variance (ANOVA) or F-test: Stat > ANOVA > Oneway

One-Way Analysis of N C1 Vendor C2 Scrap	A fiance × Response data are in one column for all factor levels Besponse: Scran Eactor: Scrap	Use this menu if the Y data are in one column and the group labels are in another column
		If each group is in its own column, use the "Oneway (Unstacked)" menu
Select	Options Comparisons Graphs Results Storage	Check box plots and individual values plot
Help	<u>O</u> K Cancel	

Conclusions:

- Because p < 0.05, reject the H₀ and conclude that at least one group is significantly different from another
- Based on the confidence intervals:
 - Average scrap associated with Vendor B's material is significantly higher than all other vendors
 - Average scrap associated with Vendor F is significantly lower than that associated with Vendors B, C, D, and G, but not significantly lower than that associated with Vendors A or E
- The ANOVA shows the scrap will be significantly lower if you use materials from Vendors F, E, or A
- Use other criteria (e.g., cost, ease of use, or other aspects) to choose among these three materials

Setting Up the Data in Minitab

Open worksheet Vendor Yield.mtw

	Ve	ndor Yield.	4T₩ ***					
ſ	Ŧ	C1	C2	C3	C4	C5-T	C6	
I		Vendor A	Vendor B	Vendor C	Vendor D	Vendor	Yield	0
I	1	91.4	99.3	92.8	94.4	Vendor A	91.4000	
ľ	2	94.6	93.7	96.4	92.8	Vendor A	94.6000	
I	3	92.6	99.1	96.0	90.8	Vendor A	92.6000	
I	4	95.0	99.0	94.0	93.2	Vendor A	95.0000	
I	5	92.2	92.8	92.8	95.2	Vendor A	92.2000	
I	6	97.0	96.7	95.6	93.2	Vendor A	97.0000	
I	7	89.4	94.5	96.8	92.0	Vendor A	89.4000	
I	8	95.4		97.2	94.0	Vendor A	95.4000	6
	9	93.4		95.2		Vendor A	93.4000	
I	10	96.6				Vendor A	96.6000	
E								

Sorted data is in columns C1-C4. Stacked data is in column C5-T and C6

Testing Data for Normality

All subgroups have a normal distribution

www.anexas.net

Testing Data for Equal Variances

Tool Bar Menu > \underline{S} tat > \underline{A} NOVA > Test for Equal \underline{V} ariances

Running a Main Effects Plot

Tool Bar Menu > \underline{S} tat > \underline{A} NOVA > \underline{M} ain Effects Plot

Main Eff	ects Plot		×
C1 C2 C3 C4 C5 C6	Vendor A Vendor B Vendor C Vendor Vendor Yield	Responses: Yield Eactors: Vendor	
	Select	<u>0</u> K	O <u>p</u> tions Cancel

The Main Effects Plot

The plot shows the output vs. the factor

Running a One Way ANOVA

Tool Bar Menu > <u>S</u>tat > <u>A</u>NOVA > <u>O</u>ne Way...

One-W	ay Analysis of V	/ariance			×
C1 C2 C3 C4 C5 C6	Vendor A Vendor B Vendor C Vendor D Vendor Yield	Response d Response:	ata are in one col Yield Vendor	umn for all factor level	5 💌
	Select		Options Results	<u>C</u> omparisons	<u>G</u> raphs
н	elp			<u></u>	Cancel

The One Way ANOVA

One-way ANOVA: Yield versus Vendor

Method

```
Null hypothesis All means are equal
Alternative hypothesis At least one mean is different
Significance level \alpha = 0.05
Equal variances were assumed for the analysis.
Factor Information
Factor Levels Values
                                                   P < 0.05: source is
Vendor 4 Vendor A, Vendor B, Vendor C, Vendor D
                                                   significant!
Analysis of Variance
Source DF Adj SS Adj MS F-Value (P-Value
Vendor 3 49.69 16.564 3.74
                                   0.022
Error 30 133.00 4.433
Total 33 182.69
Model Summary
    S R-sq R-sq(adj) R-sq(pred)
2.10551 27.20% 19.92% 6.05%
Means
Vendor N Mean StDev 95% CI
Vendor A 10 93.760 2.403 (92.400, 95.120)
Vendor B 7 96.44 2.76 (94.82, 98.07)
Vendor C 9 95.200 1.649 (93.767, 96.633)
Vendor D 8 93.200 1.386 (91.680, 94.720)
Pooled StDev = 2.10551
```


Anexas Consultancy Services

Tests of Significance (Non- Parametric)

Tests of Significance (Non- Parametric)

	Test of Mean/ Median	Test of Variance	Test of Proportion
1 Sample	 1 sample Z Test 1 Sample t Test 1 sample Sign 1 Sample Wilcoxon 	Descriptive Statistics Bartlett's test Levene's test	1 Proportion Test
2 Sample	 2 Sample t Test Mann-Whitney Paired T Test 		2 Proportion Test
2 or more Samples	 ANOVA Mood's Median/ Kruskal Wallis Test 		Chi Square

1 Sample Sign Test - Overview

1 sample sign tests allow you to compare the median of just one sample against a known median value, such as an industry benchmark or well established historical mean.

Example:-

A recruitment consultancy has recently implemented a new salary negotiation process and a project team is trying to verify that it has improved (increased) the salaries that are being achieved. The salaries of the first 20 placements made using the new negotiation process have been recorded and the project team want to compare these results against the benchmark.

1 Sample Sign Test

Because the sample of salaries is not Normally distributed and there is only one sample to compare against the benchmark.

The median salary of the sample is 60K and the historical salary median was 48K, and so it appears that there has been an increase in the median of 12K. however its quite a small sample and there is lots of variation within the sample and it is difficult to be sure.

The data file for this example can be found in **Salaries.mpj**

In this example, the sample median is being tested against a historical benchmark (the test median). Enter 48 (the historical benchmark level)

Alternate Hypothesis: Less than / Not equal / Greater than):

In this example because it appears that the sample median is greater than test median, the alternative greater than has been selected.

1 Sample Sign Test - Interpreting the Results

Stat > Nonparametrics > 1-Sample Sign

C3	New Salaries (€	Variables: 'New Salaries (€K)'	~
			~
		 Confidence interval Level: 95.0 Test median: 48 Alternative: greater than 	·
	Select		
	Help	OK	Cancel

Sign Test for Median: New Salaries (€K)

Sign test of median = 48.00 versus > 48.00 N Below Equal Above P Median New Salaries (€K) 20 5 1 14 0.0318 60.00

Session Window Results:

The first line provides a summery of the Null and Alternate Hypothesis, in a technical shorthand. Translated into day-to-day language, this line says: These are the results of a Sign Test for the sample median being equal to 48 (median = 48.00) versus it being greater than 48 (versus > 48.00)

1 Sample Sign Test – Interpreting the Results

Sign Test for Median: New Salaries (€K)

How the Sign test works:

While the Sign test produces a p-value that can be interpreted in a similar way to other hypothesis tests, the mathematics behind the Sign Test are quite different.

The sign test works by classifying each result within the sample as either above, below or equal to the test median. If the null hypothesis were true, we would expect to see approximately half of the results above and half below, the test median

However in this case, the majority of the results (14 out od 20) were above the test median, and this was high enough for the test to indicate (with statistical confidence) that the sample median (60) is greater than test median (48) It is interesting to note that one of the results was exactly equal to the test median as summarised in the session window output above. The row was 7 in the example data file.

1 Sample Sign Test – Interpreting the Results

Sign Test for Median: New Salaries (€K)

```
Sign test of median = 48.00 versus > 48.00
N Below Equal Above P Median
New Salaries (\in K) 20 5 1 14 0.0318 60.00
```

The p-value is 0.0318 (which is lower than the Alpha Level of 0.05), and so you can reject the null, and conclude (with 95% confidence) than the median salary in the sample is greater than the historical median of 48, So the new negotiation process does increase placement salaries.

The I Sample Sign test menu in Minitab does not offer any additional graphs. However using a Dot plot from the graph menu, the sample results can be visually compared to the historical benchmark of 48K. As can be seen, while some of the results are below 48, most of them are above and this is enough to conclude, statistically, that the median new salary is higher than 48K

One-Sample Wilcoxon Test - Overview

Use the one-sample Wilcoxon (also called one-sample Wilcoxon signed rank) confidence interval and test procedures to make inferences about a population median based on data from a random sample.

Use the 1-Sample Wilcoxon when you are unable to assume a distribution for the population from which the sample was drawn, but you can assume the distribution is symmetric. This is a nonparametric alternative to one-sample Z and one-sample t procedures.

One-Sample Wilcoxon Test - Overview

Example: A chemist wants to see if a newly developed antacid relieves pain in less than 12 minutes.

The data file for this example can be found in : *Antacid.MTW*

1-Sample Wilcoxon X Variables: C1 Time Time ~ Confidence interval 95.0 Level: Test median: 12 Alternative: less than • Select OK Cancel Help www.anexas.net R 01 529

Stat > Nonparametrics > One Sample Wilcoxon

One-Sample Wilcoxon Test – Interpreting the Results

Wilcoxon Signed Rank Test: Time

Test of median = 12.00 versus median < 12.00

N for Wilcoxon N Test Statistic P Median 16 16 26.5 0.017 10.05

Other results in the Session Window :

The Wilcoxon statistic is 26.5 and the Associated p-value is 0.017

Session Window Results:

Minitab produces only session window results for this test as follows:

Based on the sample data, you want to know if the newly developed antacid relieves pain in less than 12 minutes.

The hypotheses are

Null Hypothesis: H0: Median = 12.00 and Alternate Hypothesis: H1: Median < 12.00

Estimated Median:

The median of the observations for each treatment. These medians provide an estimate of the population medians for each treatment.

p-value is 0.017, Since, the p-value is less than 0.05, therefore you should reject H0 and conclude that the antacid relieves pain significantly faster than 12 minutes.

Mann-Whitney Test - Overview

Use the two-sample Mann-Whitney (also called two-sample rank or two-sample Wilcoxon rank sum) confidence interval and test procedures to make inferences about the difference between two population medians based on data from two independent, random samples.

For example, you can determine whether

- The packing time of two packing machines is the same
- The time to relief is the same for two pain relievers

Assumptions:

- Samples are randomly drawn whose distributions have the same shape
- The two random samples are independent

The Mann-Whitney test is a nonparametric alternative to the two-sample t test with pooled sample variances.

Mann-Whitney Test - Overview

Example: A state's highway department uses two brands of paint for striping roads. A highway official wants to know if a difference exists between the two brands of paint. To assess the problem, the official records the number of months that stripes applied with each brand of paint last on the highway.

The data file for this example can be found in : *Srtipes.MTW*

Mann-Whitney X First Sample: 'Brand A' Brand A C1 C2 Brand B Second Sample: 'Brand B' Confidence level: 95.0 Alternative: not equal • Select Cancel Help OK

Stat > Nonparametrics > Mann-Whitney

Mann-Whitney Test – Interpreting the Results

Mann-Whitney Test and CI: Brand A, Brand B

N Median Brand A 11 36.000 Brand B 10 37.600

Point estimate for $\eta 1 - \eta 2$ is -1.95095.5 Percent CI for $\eta 1 - \eta 2$ is (-3.000, -0.901)W = 76.5 Test of $\eta 1 = \eta 2$ vs $\eta 1 \neq \eta 2$ is significant at 0.0019 The test is significant at 0.0019 (adjusted for ties)

Other results in the Session Window :

The Mann-Whitney statistic is 76.5 and the associated p-value is 0.0019.

Confidence Interval:

Because you do not know the true value of the median, the confidence interval gives you a range of likely values based on the sample. In repeated sampling, the proportion of intervals that include the true value of the median is equal to 1 minus the chosen a-level.

Session Window Results:

Minitab produces only session window results for this test as follows:

Based on your sample, you want to know if the time that the paint stripes last on the highway is the same for the two brands

The hypotheses are

Null Hypothesis: H0: H0: $\eta 1 = \eta 2$ and Alternate Hypothesis: H1: H1: $\eta 1$ not = $\eta 2$

Point Estimate:

The difference between the sample medians is a point estimate for the difference between population medians.

p-value is 0.0019. Because the p-value is less than 0.05, you should reject H0 and conclude that the median times are significantly different.

Kruskal-Wallis Test - Overview

The Kruskal-Wallis test compares the medians of different samples of data, and can be used where the data samples are not Normally distributed and do not have any obvious outliers.

Example:- A project is looking at the time to deliver different products (INGOT and BILLET). The box plot below shows that the INGOT product appears to be delivered quicker than BILLET, and the team are keen to validate this conclusion before other tools (such as detailed process mapping) are used to find out why.

Because the INGOT results do not appear to be normally distributed (a histogram and Box plot both indicate a skewed distribution), a Kruskal-Wallis test is being used to compare the median values of the two samples.

Kruskal-Wallis Test – Interpreting the Results

Kruskal-Wallis Test: Time to deliver versus Product

Kruskal-Wallis Test on Time to deliver

ProductNMedianAve RankZBILLET257.50029.70.73INGOT306.75026.6-0.73Overall5528.0H = 0.53DF = 1P = 0.467H = 0.54DF = 1P = 0.463 (adjusted for ties)

Session Window Results:

Minitab produces only session window results for this test as follows:

Firstly the sample sizes and medians of the samples are summarised. The difference in the median values is 0.75 days (7.5-6.75), but this should be considered in combination with the following:

The size of the samples (25 for BILLET and 30 for INGOT) appears relatively low.

The resolution of the data was to the nearest 0.5 days (see previous page).

From these reasons, a hypothesis test is essential in order to decide if the difference in medians is statistically significant, as described on the left.

Kruskal-Wallis Test – Interpreting the Results

Kruskal-Wallis Test: Time to deliver versus Product

Kruskal-Wallis Test on Time to deliver

Product	N	Median	Ave Rank	Z
BILLET	25	7.500	29.7	0.73
INGOT	30	6.750	26.6	-0.73
Overall	55		28.0	
H = 0.53 H = 0.54	DF DF	= 1 P = 1 P	= 0.467 = 0.463 (adjusted for ties)

Analysing the p-value:

The p-value from this test is 0.463. since this is higher than 0.05, we cannot say with confidence that there is a difference in the medians of the two samples. In other words, the median delivery times of the two internet products (that the two samples of data represent) could be the same as each other.

Note: the two p-values usually very similar, but if not, use the value that is "adjusted for ties"

So, to summarise the results in day to day language:

Based on the data we have collected, we cannot say with confidence that there is a difference between the medians.

The difference of 0.75 hours between the sample medians could easily have occurred just by chance.

If there is a difference, more data will have to be collected to prove it.

Mood's Median Test - Overview

The Mood's Median test compares the medians(central position) of different samples of data, where the samples are not Normally distributed and where there are obvious outliers.in the data samples.

Example:- A project is looking at the time to deliver different products (INGOT and BILLET).

The data has been stratified into two groups INGOT and BILLETS, and the box plot below shows that the INGOT product appears to be delivered quicker than BILLET.

The team are keen to validate this before they set out to find and understand the root cause of this difference. Mood's Median test is being used because the Billet data appears to be skewed and also has some outliers (the asterisks)

Mood's Median Test - Overview

Data format:

Data for the Mood's Median test must be stacked in one column, with the subgroup(factor) code alongside as shown on the right.

The data file for this example can be found in *Time to deliver INGOT BILLETS.mpj and in Columns C4*

Stat > Nonparametrics > Mood's Median

C1 Time to deliver C2 Product C4 Time to deliver_ C5 Product_1	Response: ime to deliver_1'		
		Store residuals Store fits	
	Select		

Mood's Median Test – Interpreting the Results

Mood Median Test: Time to deliver_1 versus Product_1

Other results in the Session Window :

Based on the data subgroups, the difference between the subgroup sub-group medians is 1.2 Days(7.50-6.30)

The confidence interval for the difference provides more detail and confirms (with 95% confidence), that the difference in medians is somewhere between 1.91 and 0.00 Days.

Session Window Results:

Minitab produces only session window results for this test as follows:

The p-value for the test is 0.005, since this is less than Alpha Level of 0.05 we can say, with 95% confidence, that the medians of the subgroups are different.

A rough graph of the 95% Confidence Intervals (Cis) for the median of the subgroups is shown. Note that although the Cis are visually overlapping, the statistical conclusions is that they are different.

So, to summarise the results in day to day language:

We can be very confident that there is a difference in the median delivery time for INGOT & BILLETS.

The median delivery time of INGOTs is at least 0 days quicker than BILLETs but could be as much as 1.91 days quicker.

Anexas Consultancy Services

Proportions Tests
Why Learn Hypothesis Tests of Proportion?

- Make data driven decisions with defined confidence
- Determine if a statistically significant difference of proportion exists between:
 - A sample and a target
 - Two independent samples
 - More than two independent samples

What are Hypothesis Tests of Proportion?

- Test Method for analyzing the differences between:
- 1 Proportion a sample proportion and a target value
- 2 Proportion proportion obtained from two independent samples

Hypothesis Testing of Proportion - Roadmap

Comparison of Proportion: 2 Scenarios

Single Proportion Comparison
 One population proportion compared

to a target value

Two Sample Comparison
 Proportions of two independent
 populations compared to each other

Anexas Consultancy Services

1 Proportion Test

Single Proportion Comparison

target value

Practical Question (example)

Statistical Question

- H_0 : P = target value
- H_a : $P \neq target value$

"Is the population proportion statistically different from the target value?"

1 Proportion Test

Hypothesis test about the population proportion using information from one sample

Industrial Process Example Migraine Medicine

A pharmaceutical company has invented a new medicine for relieving migraine headaches. The company wants to test the hypothesis that the drug is effective more than 73% of the time.

A clinical study of 111 out of 143 adults suffering from migraine headaches reported relief after using the drug. Is this sufficient evidence that the drug is effective more than 73% of the time?

Use a 5% significance level.

Industrial Process Example Migraine Medicine

- Practical Problem
 - Is the migraine medicine effective more than 73% of the time?
- Statistical Problem
 - Is population proportion of medicine effectiveness greater than or equal to 73%?
 - Null hypothesis: population proportion is 73%
 - Alternate hypothesis: population proportion is greater than 73%

Example: Migraine Medicine

State the hypotheses and significance level

H_o: P = 0.73 H_a: P > 0.73 α = 0.05

- What hypothesis test is appropriate?
 - These hypotheses deal with proportions
 - Comparing population proportion against a target proportion using one sample data
 - Use 1 Proportion Test

Example: Migraine Medicine

Tool Bar Menu > Stat > Basic Statistics > Proportion

Analysis through Minitab

Example: Migraine Medicine

Test and CI for One Proportion

```
Test of p = 0.73 vs p > 0.73
```

					Exact
Sample	Х	N	Sample p	95.0% Lower Bound	P-Value
1	111	143	0.776224	0.711327	0.124

- Interpretation:
 - p-value = 0.124
 - p-value > α -risk (0.05): fail to reject H_o
 - Infer H_o: insufficient evidence that that the drug is more than 73% effective

Business Process Example IPO Prospectus

A Black Belt is studying the effects of voluntary disclosure of earnings forecast in the Initial Public Offering (IPO) prospectus.

A random sample of 130 IPO prospectus revealed that 58 of them did not reveal their earnings forecast.

Test the hypothesis at 5% significance level that less than 50% of IPO prospectus do not disclose their earnings forecast.

- Practical Problem
 - Is the percentage of IPO prospectus disclosing their earnings forecast less than 50%?
- Statistical Problem
 - Is population proportion of IPO prospectus revealing their earnings forecast less than 50%?
 - Null hypothesis: population proportion is 50%
 - Alternate hypothesis: population proportion is less than 50%

State the hypotheses and significance level

- H_o: P = 0.50
- H_a: P < 0.50
- α = 0.05

What hypothesis test is appropriate?

These hypotheses deal with proportions

Comparing population proportion against a target proportion using one sample data

Use 1 Proportion Test

Tool Bar Menu > Stat > Basic Statistics > 1 Proportion

Analysis through Minitab

One-Sample Proportio	on X	
	Summarized data Number of events: 58 Number of trials: 130	
	✓ Perform hypothesis test Hypothesized proportion: 0.50	One-Sample Proportion: Options × Confidence level: 95.0 Alternative hypothesis: Proportion < hypothesized proportion
Select	Optio <u>n</u> s	Method:
Help	<u>O</u> K Cancel	Help <u>O</u> K Cancel

Test and CI for One Proportion

```
Test of p = 0.5 vs p < 0.5
```

				I	Exact
Sample	Х	Ν	Sample p	95.0% Upper Bound P-V	Value
1	58	130	0.446154	0.522079	0.127

- Interpretation:
 - P-value = 0.127.
 - P-value > α -risk (0.05): Fail to reject H_o
 - Infer H_o: insufficient evidence that only less than 50% of IPO prospectus disclose their earnings forecast

Anexas Consultancy Services

2 Proportions Test

Two Sample Proportion Comparison

Practical Question (example)

Statistical Question $H_{0}: P_{1} = P_{2}$ $H_{0}: P_{1} = P_{2}$ Are the two populations' proportions •statistically different?

2 Proportion Test

- Hypothesis test about the difference between two population proportions using information from two samples
- Two sets of samples are statistically independent

Industrial Process Example: Comparing Medicines

MedChoice, Inc. distributes two identical brands of medicine for relieving migraine headaches.

It is found from controlled studies that 145 out of 200 people suffering from migraines reported relief through use of Brand A whereas 101 out of 150 people reported relief through the use of Brand B.

The company wants to know if we can conclude at the 5% level of significance that the percentage of people getting relief through use of Brand A is higher than through Brand B?

- Practical Problem
 - Is Brand A better than Brand B in providing relief from migraine headaches?
- Statistical Problem
 - Is population proportion of relief through Brand A greater than population proportion through Brand B?
 - Null hypothesis: population proportion for Brand A = population proportion for Brand B
 - Alternate hypothesis: population proportion for Brand A is greater than that of Brand B

State the Hypotheses and Significance Level

 H_{o} : $P_{A} - P_{B} = 0$ H_{a} : $P_{A} - P_{B} > 0$ $\alpha = 0.05$

- What Hypothesis Test is Appropriate?
 - These hypotheses deal with proportion values
 - Comparing population proportions using two sets of independent samples
 - Use 2 Proportion Test

Tool Bar Menu > Stat > Basic Statistics > 2 Proportion

Analysis through Minitab

Two-Sample Proportio	n	×	
	Summarized data	•	
	Sample 1	Sample 2	Two-Sample Proportion: Options ×
	Number of events: 145		Difference = (sample 1 proportion) - (sample 2 proportion)
	Number of trials. 200	150	Confidence level: 95.0
			Hypothesized difference: 0.0
			Alternative hypothesis: Difference > hypothesized difference
Select		Options	Test method: Estimate the proportions separately
Неір	<u>O</u> K	Cancel	Help <u>O</u> K Cancel

Test and CI for Two Proportions

Sample	Х	N	Sample p
1	145	200	0.725000
2	101	150	0.673333

```
Difference = p (1) - p (2)
Estimate for difference: 0.0516667
95% lower bound for difference: -0.0299692
Test for difference = 0 (vs > 0): Z = 1.04 P-Value = 0.149
```

```
Fisher's exact test: P-Value = 0.176
```

What is the Interpretation?

```
p-value = 0.149
p- value (0.149) > \alpha-risk (0.05); fail to reject H<sub>o</sub>
Infer H<sub>o</sub>: insufficient evidence that brand A is more effective than brand
B
```


Anexas Consultancy Services

Hypothesis Testing Chi-Square Tests

Why Learn Chi-Square Tools?

Make data driven decisions with defined confidence

Determine if

Two attribute variables are related

A population fits a certain probability model (distribution)

What Are Chi-Square Tools?

Chi-Square Goodness-of-Fit Test

To test if a particular distribution (model) is a good fit for a population

Chi-Square Test for Association

To test if a relationship between two attribute variables exists

$$\chi^{2} = \sum_{j=1}^{g} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$
•Chi-Square Statistic

Both of these tools use the Chi-Square distribution, where f_o and f_e are the observed and expected frequencies, respectively.

Anexas Consultancy Services

Test for Association

Business Process Example: Black Belt Projects

A sample of Black Belts was asked to rate both their six sigma project performance and the average weekly hours spent with the Project Champion discussing project details. The results are shown in the following table. Test at the 5% level the null hypothesis of no association between the two sets of ratings.

Data is given in *Chi1.mtw*

Time with Champion ■ <u>HOURS</u> 	PROJECT PERFORMANCE Low Medium				
■< 0.1	17	21	12		
■0.1 - 1	31	53	21		
■> 1	17	42	71		

- Practical problem
 - Does the performance of Black Belt projects depend on time spent with Project Champions?
- Statistical problem
 - Is there an association between project performance and time spent with Champion?
 - Null hypothesis: project performance is independent of the time spent with Champion
 - Alternate hypothesis: project performance is dependent of the time spent with Champion
- What hypothesis test is appropriate?
 - These hypotheses deal with relationship between two attribute variables
 - Use Chi-Square Test for Association

1. Open data file Chi1.mtw

C1-T	C2 C3		C4	
Hours	Low	Medium	High	
<0.1	17	21	12	
0.1-1.0	31	53	21	
>1	17	42	71	

Tool Bar Menu > <u>Stat > Tables > Chi-Square Test</u>

- 2. Stat > Tables > Chi-Square Test for Association
- 3. Fill in the dialog as shown below:

 Click Statistics and Enable Each cells' contribution to chi-square

Chi-Square Test: Low, Medium, High

Rows: Hours Columns: Worksheet columns

<0.1	Low 17 11.40	Medium 21 20.35	High 12 18.25	All 50
0.1-1.0	31 23.95	53 42,74	21 38.32	105
>1	17 29.65	42 52.91	71 47.44	130
All	65	116	104	285

Cell Contents: Count Expected count

Pearson Chi-Square = 36.622, DF = 4, P-Value = 0.000 Likelihood Ratio Chi-Square = 37.348, DF = 4, P-Value = 0.000

Interpret output
What is the p-value?
What is □²(calc)
What is its interpretation?

- Interpretation:
 - p-value = 0.000
 - p-value < a-risk (0.01): reject Ho
 - Infer Ha: sufficient evidence that Black Belt project performance and time spent with Champion are dependent

Test for Association Exercise

 Objective: Practice doing a Chi-square test in Minitab and interpret the results

Data: Shipments.MTW

Background:

- We have been tracking time taken to ship subassemblies between two manufacturing facilities by three carriers
 - Shipping records have been examined for 12 months
- Deliveries are expected to be completed within 24 hours
- The results for all shipments are summarized on the next page

Test for Association Exercise, cont.

Carrier	Within 24 Hours	24-36 Hours	36+ Hours
А	1810	679	551
В	609	219	237
С	176	85	58

Test for Association Exercise, cont.

Instructions:

- 1. Use the summarized table data in the worksheet
- 2. Do a Chi-square test and interpret it
- 3. Be prepared to report the P-value, your conclusions, and recommended next steps

Test for Association Exercise, Answers

Minitab output

Conclusion: The carriers differ: Carrier C has more deliveries than expected between 24 and 36 hours and Carrier B has more deliveries than expected in 36+ hours

Test for Association Exercise

Use the following data to decide if the outcome of a surgical procedure depends on the hospital used

Condition	Hosp A	Hosp B	Hosp C	Hosp D	Hosp E
no improvement	13	5	8	21	43
partial functional restoration	18	10	36	56	29
complete functional restoration	16	16	35	51	10

Anexas Consultancy Services

Hypothesis Testing Correlation and Regression

Hypothesis Tests

Υ	X	Hypothesis Test
Continuous / Variable Data	Attribute / Discrete Data	1-z, 1-t, 2-t, paired t, ANOVA
Attribute / Discrete Data	Attribute / Discrete Data	1-p, 2-p, Chi Square
Continuos / Variable Data	Continuos / Variable Data	Correlation, Regression, Multiple Regression
Attribute / Discrete Data	Continuous / Variable Data	Logistic Regression

Why Learn Correlation and Regression?

- Explore the existence of relationship between variables with the aid of data
- Screen variables and determine which variable(s) has the biggest impact on the response(s) variable
- Describe the nature of relationship with the help of an equation and use it for prediction

Anexas Consultancy Services

Correlation

What is Correlation?

- Correlation is a measure of the strength of association between two quantitative variables (Ex: Pressure and Yield)
- Measures the degree of linearity between two variables assumed to be completely independent of each other

Correlation coefficient or Pearson correlation coefficient is a way of measuring the strength of correlation

Correlation Coefficient

consultancy

Strength and Direction of "+" Correlation

Strength and Direction of "-" Correlation

Correlation vs. Causation

Data shows that average life expectancy of Americans increased when the divorce rate went up!

Is there a correlation between grass height and hair length?

Correlation does not imply causation! A third variable may be 'lurking' that causes both x and y to vary

Business Process Example: Cereal Sales

A market research analyst for a certain brand of cereal is interested in finding out if there is a relationship between the sales generated and shelf space used to display the cereal. As a result she conducted a study and collected data from 12 different stores selling this brand of cereal.

Shelf Space	Sales
574	960
635	1709
533	651
560	831
628	1460
615	1473
540	751
587	1238
656	1924
594	1370
622	1609
567	1120

The data contains sales \$ generated for a certain month and the shelf space dedicated to the product. What would you do? What questions might you ask?

Data in **Sales.mtw**

- Practical Problem
 - Is there a relationship between sales \$ from cereal and the shelf space used to display the cereal?
 - If there a relationship, how strong is that relationship?
- Statistical Problem
 - Are the variables 'Sales' and 'Shelf Space' correlated?
 - Null hypothesis: Sales and Shelf space are not correlated
 - Alternate hypothesis: Sales and Shelf space are correlated

State the Hypotheses and Significance Level

- H_o: ρ = 0
- $H_a: \rho \neq 0$
- α = 0.01

Notice that the hypotheses are about a population parameter

What Hypothesis Test is Appropriate?

These hypotheses deal with correlation coefficient

Make decisions based on Pearson correlation coefficient and 'p-value'

Tool Bar Menu > <u>Stat</u> > <u>Basic</u> Statistics > Graphical Summary

- Practical and Graphical:
 - Practical questions about the data?
 - Plot the data using different techniques

Tool Bar Menu > <u>Stat > Basic Statistics > Correlation</u>

orre	lation	×
C1 C2	Shelf Space Sales	Variables: Sales 'Shelf Space'
		Method: Pearson correlation 💌
		✓ Display p-values
	Select	Store matrix (display nothing)
	Help	OK Cancel

Correlations: Shelf Space, Sales

Pearson correlation of Shelf Space and Sales = 0.978 p-value = 0.000

- What is the Decision?
 - Pearson correlation or correlation coefficient for the sample, r = 0.978
 - Does that mean 'ρ' is greater than zero? Or could it be that r = 0.978 due to chance variation while 'ρ' is still zero?
 - Answer this question using table next page

- What is the statistical interpretation?
 - p-value (0.000) < α -risk (0.01): reject the null hypothesis
 - Infer H_a: sufficient evidence that there is a correlation between sales \$ and shelf space

Anexas Consultancy Services

Regression

Correlation and Regression

- Correlation tells how much linear association exists between two variables
- The Regression process creates a line that best resembles the relationship between process input and output and also provides an equation describing the nature of relationship.

Different types of Mathematical Models

 The regression process can fit several different types of line, since the linear relationship won't be applicable to all situations. The alternatives are

Different types of Mathematical Models

- Linear: A simple, common relationship that has the simplest mathematical model: Y = m(x) + c
- Where m and c are constants

Quadratic: A more complex mathematical model that includes X2 term. This can be used to model process relationships that rise and then fall again.

Cubic: A rarer situation, where the process relationship rises, falls, then rises again (or vice versa).

Correlation and Regression

- Correlation tells how much linear association exists between two variables
- Regression provides an equation describing the nature of relationship

Correlations: Shelf Space, Sales

Pearson correlation of Shelf Space and Sales = 0.978

p-value = 0.000

Regression Analysis: Sales versus Shelf Space

The regression equation is Sales = - 4711 + 10.1 Shelf Space

Regression Terminology

- Response Variable
 - This is the uncontrolled variable also known as dependent variable, output variable or Y variable
- Regressor Variable
 - Response depends on these variables also known as independent variables, input variables, or X variables
- Noise Variable
 - Input variables (X) that are not controlled in the experiment
- Regression Equation
 - Equation that describes the relationship between independent variables and dependent variable
- Residuals
 - Difference between predicted response values and observed response values

Regression Objectives

- Determination of a Model
 - Explore the existence of relationship
- Prediction
 - Describe the nature of relationship using an equation and use the equation for prediction
- Estimation
 - To assess the accuracy of prediction achieved by the regression equation
- Determination of KPIV
 - Screen variables and determine which variable has the biggest impact on the response variable

Types of Regression

Simple Linear Regression

Single regressor (x) variable such as x_1 and model linear with respect to coefficients

Example 1: $y = a_0 + a_1x + error$

Example 2: $y = a_0 + a_1x + a_2x^2 + a_3x^3 + error$

Note: 'Linear' refers to the coefficients a_0 , a_1 , a_2 , etc. It implies that each term containing a coefficient is added to the model. In example 2, the relationship between x and y are cubic polynomial in nature, but the model is linear with respect to the coefficients.

Types of Regression

Multiple Linear Regression

Multiple regressor (x) variables such as x_1 , x_2 , x_3 and model linear with respect to coefficients

Example: $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + error$

Simple Non-Linear Regression

Single regressor (x) variable such as x and model non-linear with respect to coefficients

Example: $y = a_0 + a_1 (1 - e^{-a_2 x}) + error$

Multiple Non-Linear Regression

Multiple regressor (x) variables such as x_1 , x_2 , x_3 and model nonlinear with respect to coefficients

Example: $y = (a_0 + a_1 x_1) / a_2 x_2 + a_3 x_3 + error$

Anexas Consultancy Services

Simple Linear Regression

Simple Linear Regression

- Use one independent variable (x) to explain the variation in dependent variable (y)
 - Example 1: use shelf space to explain variation sales \$
 - Example 2: amount of fertilizer applied to explain the yield of crop
- Method of Least Squares
 - Use the 'Method of Least Squares' to find the best fitting regression line

Method of Least Squares

Business Process Example: Cereal Sales

A market research analyst for a certain brand of cereal is interested in predicting the sales generated from information on shelf space used to display the cereal. As a result she conducted a study and collected data from 12 different stores selling this brand of cereal

Shelf Space, Sq in	Sales, \$
574	960
635	1779
533	651
560	831
628	1460
615	1370
540	851
587	1220
656	1889
594	1370
622	1609
567	1120

- The data contains sales \$ generated for a certain month and the shelf space dedicated to the product
- How will we create a simple linear regression model for the two variables?
- Predict the sales \$ using the regression equation when shelf space is 615 sq. in.

Data in Sales.mtw

Tool Bar Menu > <u>Stat</u> > <u>Basic</u> Statistics > Graphical Summery

- Practical and Graphical:
 - Practical questions about the data?
 - Plot the data using different techniques

Graph > Scatter Plot Scatterplot of Sales vs Shelf Space 2000 1750 1500 Sales 1250 1000 750 500 550 575 600 625 650 Shelf Space

Tool Bar Menu > Stat > Regression > Fitted Line Plot

	Response (Y): Sales		
	Predictor (X): Shelf	Space'	
	Type of Regression Mo	del ratic (Cubic	
	\bigcirc		
Select	<u>G</u> raphs	Options	<u>S</u> torage

Session Output from Minitab

Regression Analysis: Sales versus Shelf Space The regression equation is Sales = -4710.51 + 10.0720 Shelf Space

S = 87.2641 R-Sq = 95.7 % R-Sq(adj) = 95.3 % Analysis of Variance

Source	DF	SS	MS	F P
Regression	1	1709656	1709656	224.511 (0.000)
Error	10	76150	7615	
Total	11	1785806		
			Regressi	on is significant

What About R-squared?

- R-squared is a measure describing the quality of regression
- Measures the proportion of variation that is explained by the regression model

•
$$R^{-} = SS_{regression} / SS_{total} = (SS_{total} - SS_{error}) / SS_{total} = 1 - [SS_{error} / SS_{total}]$$

Source	DF	SS	MS	F	Р
Regression	1	1709656	1709656	224.511	0.000
Error	10	76150	7615		
Total	11	1785806			
		$R^2 = 1709656$	6 / 1785806 = 9	95.74%	

95.7% of variation in sales can be explained by variation in shelf space

What About R-Sq?

- What is the R-squared on a regression with two data points?
- Does that mean a model with two data points is better?

• Which model is better? Linear or Cubic model?

- R-Squared gets bigger as we add more and more terms!
- So should we keep adding terms?

What is R-Sq (adj)?

- More realistic measurement and is a modified measure of R-squared
- Takes into account of number of terms in the model and number of data points
- Adj R² =1- [SS_{error} / (n-p)] / [SS_{total} / (n-1)] = 1- $\frac{n-1}{n-p}$ (1- R²)

where n = number of data points and p = number of terms in the model

 Becomes smaller when added terms provide little new information and as the number of model terms gets closer to the total sample size

• Which model is better? Linear or Cubic model?

The regression equation is

Sales = -4710.51 + 10.0720 Shelf Space

S = 87.2641 R-Sq = 95.7 % R-Sq(adj) = 95.3%

Predict 'Sales' for 615 'Shelf Space' in the above equation

- Substitute the value for 'Shelf Space' in the above equation
- Sales = -4710.51 + 10.072(615) = \$1483.77
- What about the uncertainty around this prediction? Is sales expected to be exactly \$1483.77?

Tool Bar Menu > Stat > Regression > Fitted Line Plot

	<u>R</u> esponse: Sales		•		
	Enter individual values	9.0	•		
	×				
	'Shelf Space' A				
Select		Options	R <u>e</u> sults	<u>S</u> torage	⊻iew Model

Prediction for Sales

Regression Equation

Sales = -4711 + 10.072 Shelf Space

Variable Setting Shelf Space 615

 Fit
 SE Fit
 95% CI
 95% PI

 1483.78
 29.3538
 (1418.38, 1549.19)
 (1278.64, 1688.92)

Tool Bar Menu > Stat > Regression > Regression > Predict

- We are 95% certain that sales will be between \$1278.6 and \$1688.9 when shelf space is 615 sq. in.
- In the example, the actual value was \$1370

Assumptions for Regression

Tool Bar Menu > Stat > Regression > Regression

- To use the results of regression, assumptions about residuals must be satisfied
- What are the assumptions about residuals?
 - Residuals are normally distributed with mean of zero
 - Residuals show no pattern (random)
 - Residuals have constant variance (homogeneous variance or no heteroscedasticity)
 - Residuals are independent of the values of regressor (x) variables
 - Residuals are independent of each other

Assumptions for Regression

Residuals are error in the fit of regression line

- Difference between the observed value of response variable and fitted value

Fit Regression Model Graphs - Four-in-One Residual Plot

- The four-in-one residual plot displays four different residual plots together in one graph window. This layout can be useful for comparing the plots to determine whether your model meets the assumptions of the analysis. The residual plots in the graph include:
- Histogram indicates whether the data are skewed or outliers exist in the data
- Normal probability plot indicates whether the data are normally distributed, other variables are influencing the response, or outliers exist in the data
- Residuals versus fitted values indicates whether the variance is constant, a nonlinear relationship exists, or outliers exist in the data
- Residuals versus order of the data indicates whether there are systematic effects in the data due to time or data collection order

Assumptions for Regression

Residuals are normally distributed around mean of zero

Residuals do not exhibit heteroscedasticity (they have homogenous variance)

Residuals are randomly distributed

Histogram of residuals resemble a normal distribution with mean of zero

Residuals are independent of 'Shelf Space' variable

No assumptions were violated Regression results are valid

Checking the Model – Analysis of Residuals

 Confirming that your regression model is a reasonable fit can be done visually with simple, regression, because you are able to see the fitted line plot. However this is not possible wit Multiple regression since it is more than two dimensional. Instead, the residual errors between the model and the data points can be analysed in order to decide if the model is a good for the data. This possible because the behavior of residuals for a gods fitting is well established as described below.

Anexas Consultancy Services

Multiple Regression

Module Objectives

By the end of this module participant will be able to:

- Determine, for a given response variable, the key process input variables from a set of multiple input variables
- Perform multiple linear regression for a given set of response variable using several input variables
- Perform model diagnostics and validate assumptions
- Use regression model to predict the value of a response variable for given values of predictor variables

Why Learn Multiple Regression?

- Explore the existence of relationship between a dependent variable and several independent variables
- Screen multiple input variables and determine which variables have the biggest impact on the response variable
- Describe the nature of relationship with an equation and use it for prediction

What is Multiple Regression?

- Procedure of establishing relationship between a continuous type response variable and two or more independent variables
- Multiple regression equation can be used to predict a response based on values of predictor variables
- Multiple regression equation takes the form

 $Y = f(x_1, x_2, x_3,)$

Types of Multiple Regression

Multiple Linear Regression

Multiple regressor (x) variables such as x_1 , x_2 , x_3 and model linear with respect to coefficients

Example1: $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + error$

Example2: $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_2^2 + error$

Multiple Non-Linear Regression

Multiple regressor (x) variables such as x_1 , x_2 , x_3 and model non-linear with respect to coefficients

Example: $y = (a_0 + a_1 x_1) / a_2 x_2 + a_3 x_3 + error$

This module focuses on multiple linear regression applying general least squares method

Multicollinearity

- A condition in which two or more independent variables (x variables) are correlated (pairwise and more complex linear relationships)
- When used in multiple regression model, they contribute to redundant information
- For example, fuel economy of a truck = f (truck load, engine horse power)
- But truck load may be correlated with engine horse power
- Truck load and horse power provide some overlapping information leading to potential problems

Problems Due to Multicollinearity

- Multicollinearity can cause severe problems
 - calculations of coefficients and standard errors are affected (unstable, inflated variances)
 - difficulty in assessing any particular variable's effect
 - opposite signs (from what is expected) in the estimated parameters
 - if two input variables x_1 and x_2 are highly correlated, then p-value for both might be high

Detecting Multicollinearity

- High values of pairwise correlation (generally > 0.8) provide warnings of potential multicollinearity problems
- If the above two variables are strongly correlated, one of them should be removed from regression model

Variance Inflation Factor

 A metric, called variance inflation factor (VIF) calculates the degree of <u>multicollinearity</u>

$$VIF = \frac{1}{1 - R_i^2}$$

- R_i^2 is the R^2 value obtained when X_i is regressed against other X
- A large VIF implies that at least one variable is redundant
- VIF > 10: high degree of multicollinearity cause for serious concern (R_i² > .9)
- VIF > 5: moderate degree of multicollinearity ($0.8 < R_i^2 < 0.9$)
- Guideline: Ensure that VIF < 5 when possible

Calculating VIF

Minitab displays VIF values in the session window through *Stat* > *Regression* > *Regression* > *Fit Regression Model* menu

Regression	×	Regression Analysis: Monthly Hrs versus Teller, Accounts, Population, Urban
C1 Teller C2 Accounts C3 Population C5 Urban	Responses:	Analysis of Variance Source DF Adj SS Adj MS F-Value P-Value Regression 4 34308448 8577112 5345.10 0.000
C7 Monthly Hrs	Continuous predictors: Teller Accounts Population Urban	Teller 1 2719647 2719647 1694.83 0.000 Accounts 1 41 41 0.03 0.876 Population 1 8948965 8948965 5576.83 0.000 Urban 1 123813 123813 77.16 0.000 Error 12 19256 1605 1605 Total 16 34327704 16 0.000
	Categorical predictors:	Model Summary S R-sq R-sq(adj) R-sq(pred) 40.0583 99.94% 99.93% 99.90%
Select	Model Options Coding Stepwise Graphs Results Storage	Coefficients Term Coef SE Coef T-Value P-Value VIF Constant 1094 148 7.41 0.000 Teller 0.9510 0.0231 41.17 0.000 10.59 Accounts 0.0091 0.0571 0.16 0.8 6 8.31 Population 0.056381 0.000755 74.68 0.000 1.04 Urban 238.5 27.2 8.78 0.000 1.95
Help	<u></u> Cancel	

Predictor Variable Selection

- What combination of predictor variables is best for the regression model?
- Three options in Minitab:
 - Stepwise: procedure to add and remove variables to the regression model to produce a useful subset of predictors
 - Best Subsets: procedure to give best fitting regression model that can be constructed with one variable, two variable, three variable, etc. models
 - Regression: once the best model is selected, use Regression to get more detailed diagnostics

Best Subsets

Tool Bar Menu > Stat > Regression > Regression> Best Subsets

C1 Teller C2 Accounts C3 Population C5 Urban C6 City C7 Monthly Hrs	Response: Monthly Hrs'		
	City Monthly Hrs	Teller Population Urban	
		Predictors in all models:	^
	Select		~

Use 'Best Subsets' technique to select a group of likely models for further analysis.

Best Subsets Statistics

- · Select the smallest subset that fulfills certain statistical criteria
- Minitab displays R², R² (adjusted), C-p, and s statistics
 - R² (large R² is desired; use to compare models with the same number of terms)
 - adjusted R² (large is desired; use to compare models with different number of terms)
 - s (standard deviation of error terms; small is desired)
 - Mallows' C-p statistic (small is desired; Guideline: want C-p ≤ number of terms in model)

Putting It All Together

Multiple regression objective: Establish a model with high prediction ability and minimum multicollinearity

Multiple regression steps:

1. Remove variables contributing to multicollinearity from the predictors

2. Use remaining variables and apply Best Subsets to evaluate best predictor candidates for the model

- 3. Choose the best candidate and complete regression analysis
- 4. Perform model diagnostics to identify outliers and unusual observations
- 5. Analyze residuals for violation of assumptions
- 6. Assess predictive capability using new observations

Business Process Example: Bank Labor Hours

A banking institution wants to produce an empirical equation that will estimate personnel needs its branches. The following data was collected from its existing branches at various locations. The response variable (Y) for the study was monthly labor hours. The input variables were average number of daily teller transactions (x1), average count of total number of accounts (x2), location of branch (x3), population within 20 Km radius (x4). The data is recorded in the file **Banking.mtw.**

Business Process Example: Bank Labor Hours

- Establish a multiple regression model to predict monthly labor hours using the predictor variables
- Perform model diagnostics to detect any outliers or unusual observations
- Validate any assumptions used for creating the model

Banking.mtw

- Output variable: Monthly Hrs
- Input variables: Teller, Accounts, Population, Location
- Practical questions about the data and process?

Eile	e <u>E</u> dit <u>M</u> anip	o <u>C</u> alo <u>S</u> tat <u>G</u> ra	aph E <u>d</u> itor <u>W</u> ind	ow <u>H</u> elp Si <u>x</u> Sig	ma	
28 5 8 6 2 5 6 8 5 7 6 8 6 8 6 8 6 6 6 6 6 6 6 6 6 6						
Ŧ	C1	C2	C3	C4-T	C5	
	Teller	Accounts	Population	Location	Monthly Hrs	
1	2842.8	2967	58800	Urban	7381.8	
2	2549.2	3243	65200	Urban	7465.0	
3	2718.4	3519	70900	Urban	7925.3	
4	3683.2	3818	77400	Urban	9265.2	
5	5916.8	4439	79300	City	11282.6	
6	5825.6	4347	81000	City	11156.2	
7	4785.6	4025	71900	City	9714.0	
8	5410.4	4278	63900	Urban	10123.0	
9	5062.4	4370	54500	Urban	9269.0	
10	5647.6	4301	39500	City	8746.2	
11	6676.4	4485	44500	City	9963.6	
12	5828 A	4738	43600	Hrhan	0346.3	

- Dealing with indicator variables (dummy variables)
 - To use independent variables which are categorical (e.g, location, gender) in regression, first create "indicator" variables (dummy variables)
 - Indicators are simply 1's and 0's which are used like binary code.
 - Each level of a categorical variable is assigned a column.
 - If a row of data is associated with that level of the variable, the value in that column for that row of data will be 1. If not associated with that level, the value will be 0.

- 1. Create an indicator variable for "Location"
 - Toolbar>Calc> Make indicator Variables

		Make Indica	tor Variables	×
C1 C2 C3 C4 C5	Teller Accounts Population Location Monthly Hrs	Indicator variables for:	Location	
		Distinct Value	Column	
		City	'Location_City'	
		Urban	'Location_Urban'	
	Select			
	Help		<u>Q</u> K Cance	!

- Result should follow the pattern below
- <u>Order</u> in which the columns are named is important. For alphanumeric data, the columns are created in the order specified as the value order (alphabetic, order of appearance, user defined).

_				
	Location	Urban	City	М
D	Urban	1	0	
D	Urban	1	0	
D	Urban	1	0	
D	Urban	1	0	
D	City	0	1	
D	City	0	1	
D	City	0	1	
D	Urban	1	0	
D	Urban	1	0	
D	City	0	1	
D	City	0	1	
D	Urban	1	0	
_		-	-	

- Create an indicator variable for "Location"
- When categorical variables are used in the regression model, one column of indicator values is NEVER included.
- In the example, use either "Urban" or "City" since it would be redundant to use both. (If "Urban"=0, then the observation must be "City")

- Multiple regression steps:
- Remove variables contributing to multicollinearity from the predictors
- Identify if multicollinearity is a problem by using variance inflation factors (VIF) measurements
- 1. Stat> Regression> Regression> Fit Regression Model
- 2. Fill in the dialog as shown below:

Regre	ession		×
C1	Teller	Responses:	
C2 C3	Accounts Population	'Monthly Hrs'	^
C6 C7	City Monthly Hrs	Continuous predictors:	~
		Teller Accounts Population Urban	^
			~
		Categorical predictors:	^
			~
		Model Optio <u>n</u> s Co <u>d</u> ing	<u>S</u> tepwise
	Select	<u>G</u> raphs <u>R</u> esults	Storage
	Help	<u>о</u> к	Cancel

Serious multicollinearity problem! Want VIF <5

The regress Monthly Hrs	sion equation $= 1094 + 0$.	n is 951 Teller –	+ 0.0091 Acc	ounts + (0.0564
Population	+ 238 Urban				
Predictor	Coef	SE Coef	Т	P	VIF
Constant	1094.3	147.8	7.41	0.000	
Teller	0.95103	0.02310	41.17	0.000	10.6
Accounts	0.00913	0.05706	0.16	0.876	8.3
Populati	0.0563806	0.0007550	74.68	0.000	1.0
Urban	238.49	27.15	8.78	0.000	1.9

- b. Identify pairwise correlations between x variables
- 1. Stat> Basic Statistics> Correlation..
- 2. Fill in the dialog as shown below:
- 3: Press Ok

Next step: remove Accounts and check multicollinearity

Teller	Accounts	Populati	
0.918			
-0.024	-0.082		
-0.573	-0.372	-0.126	
	Teller 0.918 -0.024 -0.573	Teller Accounts 0.918 -0.024 -0.082 -0.573 -0.372	Teller Accounts Populati 0.918 -0.024 -0.082 -0.573 -0.372 -0.126

Remove "Accounts" and repeat regression and check for VIF values

Regressi	on			×
C1 C2 C3 C5 C6 C7	Teller Accounts Population Urban City Monthly Hrs	R <u>e</u> sponse: Pred <u>i</u> ctors:	'Monthly Hrs' Teller Population	Urban 🗾
	Select		<u>G</u> raphs <u>R</u> esults	Options Storage
ŀ	telp			Cancel

All VIF <5

Predictor	Coef	SE Coef	Т	Р	VIF	
Constant	1114.38	74.88	14.88	0.000		
Teller	0.954454	0.008388	113.78	0.000	1.5	
Populati	0.0563707	0.0007237	77.89	0.000	1.0	
Urban	240.49	23.18	10.38	0.000	1.5	

• Multiple regression steps:

2. Use remaining variables and apply Best Subsets to evaluate best predictor candidates for the model

1. Stat> Regression> Best Subsets..

2. Fill in the dialog as shown below:

3: Press Ok

Next step: remove LENGTH and check VIF values

Response is Monthly Hrs

o n o v o					
3	99.9	99.9	4.0	38.528	XXX
2	73.7	70.0	6069.0	802.90	X X
2	99.5	99.4	109.7	113.11	ХХ
1	25.7	20.8	2E+04	1303.6	Х
1	73.7	71.9	6075.6	776.22	Х
Vars	R - Sq	R-Sq(adj)	C-p	S	rin
					eta
					l a b
					l l r
					e u U
					Тр
					0
					P

Multiple regression steps:

3. Choose the best candidate and complete regression analysis

1. Stat> Regression> Regression

2. Fill in the dialog as shown below:

3: Press Ok


```
The regression equation is
Monthly Hrs = 1114 + 0.954 Teller + 0.0564 Population + 240 Urban
```

Coef	SE Coef	Т	P
1114.38	74.88	14.88	0.000
0.954454	0.008388	113.78	0.000
0.0563707	0.0007237	77.89	0.000
240.49	23.18	10.38	0.000
	Coef 1114.38 0.954454 0.0563707 240.49	CoefSE Coef1114.3874.880.9544540.0083880.05637070.0007237240.4923.18	CoefSE CoefT1114.3874.8814.880.9544540.008388113.780.05637070.000723777.89240.4923.1810.38

S = 38.53 R-Sq = 99.9% R-Sq(adj) = 99.9%

Multiple regression steps:

4. Perform model diagnostics to identify outliers and unusual

Outliers/ Unusual Observations

C7	C8	C9	C10
Monthly Hre	SDES1	HII	COOK1
	JREST		COOKT
7381.8	-0.03088	0.243202	0.000077
7465.0	0.05043	0.275047	0.000241
7925.3	-0.62889	0.256412	0.034096
9265.2	0.92022	0.197013	0.051941
11282.6	1.45481	0.181257	0.117139
11156.2	-2.44597	0.197162	0.367313
9714.0	-0.60984	0.197691	0.022910
10123.0	0.05897	0.158210	0.000163
9269.0	0.28358	0.152478	0.003617
8746.2	0.49623	0.398760	0.040829
9963.6	-0.98303	0.304931	0.105985
9346.3	-0.91801	0.315137	0.096947
9734.0	0.65238	0.172624	0.022199
10390.2	1.78362	0.127810	0.116546
10773.6	-0.36476	0.139764	0.005404
12673.2	0.62914	0.293429	0.041094
11776.1	-0.57219	0.389073	0.052128

Potential trouble spots: Standardized residual>2 Leverage > 2p/n = 0.4706 Cook's distance > 1

What actions should be taken with the outliers and influential observations, if any ?

5. Analyze residuals for violation of assumptions

Anexas Europe – Lean and Six Sigma Training and Certification

Example: Bank Labor Hours Residual Plot Analysis

661

Industrial Process Example: Alumina Deposition

A chemical engineer wants to model the process of placing Alumina / Ceria on ceramic honeycomb substrate as an acid water slurry. The Key Process Output Variable (KPOV) of interest is the 'wet weight pickup' measured in grams per cubic inch of substrate volume of slurry on each ceramic substrate. Thirteen input variables affecting the response variable (wet weight pickup) were also identified.

Before performing design of experiments, engineer wants to narrow down the number of input variables affecting the response variable.

Industrial Process Example: Alumina Deposition

Data collected as part of a passive study conducted to identify the leverage variables affecting the 'wet weight pickup' is given in *(Multiwet.mtw)*. Perform a multiple regression to model the relationship between input and output variables.

Multiwet.mtw

- Output variable: wet_pu
- Input variables: RATE, b_speed, noz_ht, noz_pre, vair_pre, sl_temp, sl_vi, ol_mv, ol_%sol, ol_ph, LENGTH, AREA, RAW
- Practical questions about the data and process?

Multiple regression steps:

- 1. Remove variables contributing to multicollinearity from the predictors
- a. Identify if multicollinearity is a problem by using variance inflation factors (VIF) measurements
- 1. Stat> Regression> Regression
- 2. Fill in the dialog as shown below:

Serious multicollinearity problem! Want VIF <5

Predictor	Coef	SE Coef	Т	P	VIF
Constant	-0.503	3.733	-0.13	0.893	
RATE	0.03827	0.02531	1.51	0.139	13.7
b_speed	0.01821	0.01121	1.62	0.113	5.3
noz_ht	-0.6738	0.8084	-0.83	0.410	134.7
noz_pre	0.5272	0.1106	4.77	0.000	11.8
vair_pre	0.006180	0.007003	0.88	0.383	8.3
sl_temp	-0.02794	0.01442	-1.94	0.060	9.0
sl_vi	-0.001636	0.004425	-0.37	0.714	2.3
ol_mv	0.02743	0.02616	1.05	0.301	2.2
ol_%sol	0.03942	0.01781	2.21	0.033	2.1
ol_ph	-0.2010	0.1225	-1.64	0.109	5.2
LENGTH	-0.4734	0.2634	-1.80	0.080	109.7
AREA	-0.11130	0.03847	-2.89	0.006	64.5
RAW	0.4473	0.3337	1.34	0.188	5.0

- b. Identify pairwise correlations between x variables
- 1. Stat> Basic Statistics> Correlation..
- 2. Fill in the dialog as shown below:
- 3: Press Ok

Next step: remove noz_ht and check multicollinearity

	RATE	b_speed	noz_ht	noz_pre	vair_pre	sl_temp	sl_vi	ol_mv
b_speed	0.164							
noz_ht	0.661	0.462						
noz_pre	-0.451	0.044	0.138					
vair_pre	0.202	0.332	-0.042	-0.469				
sl_temp	-0.445	-0.197	-0.781	-0.118	0.335			
sl_vi	-0.122	-0.185	-0.131	-0.110	-0.031	0.250		
ol_mv	-0.007	0.512	0.328	0.262	0.289	-0.193	-0.206	
ol_%sol	-0.275	-0.529	-0.372	0.081	-0.251	0.261	0.147	-0.369
ol_ph	0.534	0.391	0.723	0.064	0.335	-0.540	-0.290	0.436
LENGTH	-0.516	-0.490	-0.959	-0.161	-0.030	0.755	0.019	-0.397
AREA	0.240	0.573	0.857	0.503	-0.073	-0.704	-0.204	0.542
RAW	-0.485	-0.526	-0.508	-0.086	-0.226	0.263	0.386	-0.213
	ol_%sol	ol_ph	LENGTH	AREA				
ol_ph	-0.462	_						
LENGTH	0.421	-0.703						
AREA	-0.382	0.686	-0.891					
RAW	0.277	-0.579	0.360	-0.448				

- c. Remove 'noz_ht' and assess VIF values
- 1. Stat> Regression> Regression
- 2. Fill in the dialog as shown below:

Regression	Regression - Options
C1 RATE C2 b_speed C3 noz_ht C4 noz_pre C5 vair_pre C6 sl_temp C7 sl_vi C8 ol_mv C9 ol_%sol C10 ol_ph C11 LENGTH C12 AREA C13 RAW C14 wet_pu C20 OLPH C21 olcode	Lesponse: 'wet_pu' rredictors: RATE 'b_speed' 'noz_pre' 'vair_pre' 'sl_temp' 'sl_vi' 'ol_mv' 'ol_%sol' 'ol_ph' LENGTH AREA RAW Image: Select in the selection intervals for new observations: Base of the selection intervals for the selection intervals f
Select Help	Graphs Options Results Storage QK Cancel

Several factors still have high VIF! Want VIF <5

Predictor	Coef	SE Coef	Т	P	VIF
Constant	-1.920	3.310	-0.58	0.565	
RATE	0.02193	0.01595	1.37	0.177	5.5
b_speed	0.01763	0.01114	1.58	0.122	5.3
noz_pre	0.5305	0.1100	4.82	0.000	11.8
vair_pre	0.009866	0.005409	1.82	0.076	5.0
sl_temp	-0.03070	0.01398	-2.20	0.034	8.5
sl_vi	-0.000349	0.004130	-0.08	0.933	2.0
ol_mv	0.02591	0.02599	1.00	0.325	2.2
ol_%sol	0.03325	0.01613	2.06	0.046	1.7
ol_ph	-0.2139	0.1210	-1.77	0.085	5.1
LENGTH	-0.2901	0.1445	-2.01	0.052	33.3
AREA	-0.11591	0.03792	-3.06	0.004 <	63.1
RAW	0.5904	0.2850	2.07	0.045	3.7

- d. Remove 'noz_ht' and assess VIF values
- 1. Stat> Basic Statistics> Correlation..
- 2. Fill in the dialog as shown below:
- 3: Press Ok

Next step: remove AREA and check multicollinearity

RATE	b_speed	noz_pre	vair_pre	sl_temp	sl_vi	ol_mv	ol_%sol
0.164							
-0.451	0.044						
0.202	0.332	-0.469					
-0.445	-0.197	-0.118	0.335				
-0.122	-0.185	-0.110	-0.031	0.250			
-0.007	0.512	0.262	0.289	-0.193	-0.206		
-0.275	-0.529	0.081	-0.251	0.261	0.147	-0.369	
0.534	0.391	0.064	0.335	-0.540	-0.290	0.436	-0.462
-0.516	-0.490	-0.161	-0.030	0.755	0.019	-0.397	0.421
0.240	0.573	0.503	-0.073	-0.704	-0.204	0.542	-0.382
-0.485	-0.526	-0.086	-0.226	0.263	0.386	-0.213	0.277
	RATE 0.164 -0.451 0.202 -0.445 -0.122 -0.007 -0.275 0.534 -0.516 0.240 -0.485	RATE b_speed 0.164 -0.451 0.044 0.202 0.332 -0.445 -0.197 -0.122 -0.185 -0.007 0.512 -0.275 -0.529 0.534 0.391 -0.516 -0.490 0.240 0.573 -0.526	RATEb_speednoz_pre0.164-0.4510.044-0.2020.332-0.469-0.445-0.197-0.118-0.122-0.185-0.110-0.0070.5120.262-0.275-0.5290.0810.5340.3910.064-0.516-0.490-0.1610.2400.5730.503-0.485-0.526-0.086	RATEb_speednoz_prevair_pre0.164-0.4510.044-0.2020.332-0.469-0.445-0.197-0.1180.335-0.122-0.185-0.110-0.031-0.0070.5120.2620.289-0.275-0.5290.081-0.2510.5340.3910.0640.335-0.516-0.490-0.161-0.0300.2400.5730.503-0.073-0.485-0.526-0.086-0.226	RATEb_speednoz_prevair_presl_temp0.164-0.4510.044-0.2020.332-0.469-0.445-0.197-0.1180.335-0.122-0.122-0.185-0.110-0.0310.250-0.0070.5120.2620.289-0.193-0.275-0.5290.081-0.2510.2610.5340.3910.0640.335-0.540-0.516-0.490-0.161-0.0300.7550.2400.5730.503-0.073-0.704-0.485-0.526-0.086-0.2260.263	RATEb_speednoz_prevair_presl_tempsl_vi0.164-0.4510.0440.2020.332-0.469-0.445-0.197-0.1180.335-0.122-0.185-0.110-0.0310.250-0.0070.5120.2620.289-0.193-0.206-0.275-0.5290.081-0.2510.2610.1470.5340.3910.0640.335-0.540-0.290-0.516-0.490-0.161-0.0300.7550.0190.2400.5730.503-0.073-0.704-0.204-0.485-0.526-0.086-0.2260.2630.386	RATEb_speednoz_prevair_presl_tempsl_viol_mv0.164-0.4510.0440.2020.332-0.469-0.445-0.197-0.1180.335-0.122-0.185-0.110-0.0310.250-0.0070.5120.2620.289-0.193-0.206-0.275-0.5290.081-0.2510.2610.147-0.3690.5340.3910.0640.335-0.540-0.2900.436-0.516-0.490-0.161-0.0300.7550.019-0.3970.2400.5730.503-0.073-0.704-0.2040.542-0.485-0.526-0.086-0.2260.2630.386-0.213

	ol_ph	LENGTH	AREA
LENGTH	-0.703		
AREA	0.686	-0.891	
RAW	-0.579	0.360	-0.448

- e. Remove 'AREA' and assess VIF values
- 1. Stat> Regression> Regression
- 2. Fill in the dialog as shown below:

		riegiessio	n - options	
RegressionC1RATEC2b_speedC3noz_htC4noz_preC5vair_preC6sl_tempC7sl_viC8ol_mvC9ol_%solC10ol_phC11LENGTHC12AREAC13RAWC14wet_puC20OLPHC21olcode	Response: 'wet_pu' Predictors: RATE 'b_speed' 'noz_pre' 'vair_pre' 'sl_temp' 'sl_vi' 'ol_mv' 'ol_%sol' 'ol_ph' LENGTH RAW	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C20 C21	RATE b_speed noz_ht noz_pre vair_pp sl_tep sl_tep sl_vi ol_mv ol_%sol ol_ph LENGTH AREA RAW wet_pu OLPH olcode	Weights: Fit intercept Display: Lack of Fit Tests Variance inflation factors: Pure error Durbin-Watson statistic Sara subsetting PRESS and predicted R-square Prediction intervals for new observations: Confidence level: 95 Storage Confidence limits SEs of fits Prediction limits QK Cancel
Select Help	GraphsOptionsResultsStorageOKCancel			
	www.anexas.net			R 01 673

24

Several factors still have high VIF! Want VIF <5

Predictor	Coef	SE Coef	Т	P	VIF
Constant	-4.649	3.512	-1.32	0.193	
RATE	0.03761	0.01664	2.26	0.029	4.9
b_speed	-0.00136	0.01019	-0.13	0.894	3.7
noz_pre	0.27940	0.08070	3.46	0.001	5.2
vair_pre	0.007805	0.005913	1.32	0.195	4.9
sl_temp	-0.01220	0.01389	-0.88	0.385	6.9
sl_vi	0.003396	0.004345	0.78	0.439	1.8
ol_mv	0.00540	0.02767	0.20	0.846	2.0
ol_%sol	0.02337	0.01741	1.34	0.187	1.7
ol_ph	-0.3187	0.1279	-2.49	0.017	4.7
LENGTH	0.08079	0.08651	0.93	0.356 <	9.8
RAW	0.7490	0.3087	2.43	0.020	3.5

- f. Remove 'AREA' and assess VIF values
- 1. Stat> Basic Statistics> Correlation..
- 2. Fill in the dialog as shown below:
- 3: Press Ok

Next step: remove LENGTH and check VIF values

	RATE	b_speed	noz_pre	vair_pre	sl_temp	sl_vi	ol_mv	ol_%sol
b_speed	0.164							
noz_pre	-0.451	0.044						
vair_pre	0.202	0.332	-0.469					
sl_temp	-0.445	-0.197	-0.118	0.335				
sl_vi	-0.122	-0.185	-0.110	-0.031	0.250			
ol_mv	-0.007	0.512	0.262	0.289	-0.193	-0.206		
ol_%sol	-0.275	-0.529	0.081	-0.251	0.261	0.147	-0.369	
ol_ph	0.534	0.391	0.064	0.335	-0.540	-0.290	0.436	-0.462
LENGTH	-0.516	-0.490	-0.161	-0.030	0.755	0.019	-0.397	0.421
RAW	-0.485	-0.526	-0.086	-0.226	0.263	0.386	-0.213	0.277

	<u>ol_ph</u>	LENGTH
LENGTH	-0.703	
RAW	-0.579	0.360

- g. Remove 'LENGTH' and assess VIF values
- 1. Stat> Regression> Regression
- 2. Fill in the dialog as shown below:

Regression	x	C1 RATE C2 b_speed C3 noz_ht
C1 RATE C2 b_speed C3 noz_ht C4 noz_pre C5 vair_pre C6 sl_temp C7 sl_vi C8 ol_mv C9 ol_%sol C10 ol_ph C11 LENGTH C12 AREA C13 RAW C14 wet_pu C20 OLPH C21 olcode	Response: 'wet_pu' Predictors: RATE 'b_speed' 'noz_pre' 'vair_pre' 'sl_temp' 'sl_vi' 'ol_mv' 'ol_%sol' 'ol_ph' RAW	C4 noz_pre Display Lack of Fit Tests C5 vair_pre Variance inflation factors Pure error C7 sl_vi Durbin-Watson statistic Data subsetting C8 ol_av PRESS and predicted R-square C10 ol_ph Prediction intervals for new observations: C13 RAW C14 wet_pu C20 OLPH C21 olcode Confidence level: 95 Storage Confidence limits Belect Sis of fits Help QK
Select	<u>G</u> raphs Options <u>R</u> esults Storage	
Help	<u>OK</u> Cancel	
	www.anexas.net	R 01 677

24

All VIF <5

Predictor	Coef	SE Coef	Т	P	VIF
Constant	-3.111	3.097	-1.00	0.321	
RATE	0.02845	0.01343	2.12	0.040	3.2
b_speed	-0.006774	0.008372	-0.81	0.423	2.5
noz_pre	0.23409	0.06439	3.64	0.001	3.3
vair_pre	0.005700	0.005457	1.04	0.303	4.2
sl_temp	-0.002936	0.009704	-0.30	0.764	3.4
sl_vi	0.001197	0.003646	0.33	0.744	1.3
ol_mv	0.00778	0.02751	0.28	0.779	2.0
ol_%sol	0.02297	0.01738	1.32	0.194	1.7
ol_ph	-0.3436	0.1248	-2.75	0.009	4.5
RAW	0.6230	0.2772	2.25	0.030	2.9

Multiple regression steps:

2. Use remaining variables and apply Best Subsets to evaluate best predictor candidates for the model

- 1. Stat> Regression> Best Subsets..
- 2. Fill in the dialog as shown below:
- 3: Press Ok

Response is wet_pu

								v							
						b	n	а	s			ο			
Νc	ovt star	· ramova I F	NGTH				ο	i	1			1			
INC	shi siep					s	z	r		s	0		0		
an	d chec	k VIF values			R	p			t	1	1	<u>କ୍</u>	1		
					A	г е	$\overline{\mathbf{p}}$	- p	e	_	_	s	_	R	
					 Т	2	r	r	m			0	$\overline{\mathbf{n}}$	Δ	
Vare	P-Sa	P-Sa(adi)	C-7	c	Ţ	2	-	-	5	÷		1	P h	11 TAT	
Vals	<u>к-</u> 54	r-sd(ad))	C−Þ	5		u	e	e	Р	Ŧ	v	-	11	~	
1	31.8	30.4	25.0	0.16911									x		
1	27.1	25.6	29.9	0.17484										х	
2	45.6	43.3	12.4	0.15255			х						х		
2	41.6	39.2	16.6	0.15808			х							х	
3	52.4	49.4	7.2	0.14423			х						х	х	
3	52.1	49.0	7.6	0.14475		x	x						х		
4	56.8	53.1	4.5	0.13885	х		х						x	х	
4	56.0	52.1	5.4	0.14022			x					x	x	x	
- 5	60 0	55 5	3 2	0 13512	x		x					x	x	x	
5	58 2	53.6	5 1	0 13808	x	x	x						x	x	
6	61 4	56 1	3 7	0 13422	x		x	x				x	x	x	
6	60 5	55 1	4 7	0 13579	x	_	x		x	_	_	x	x	x	
7	61 8	55 6	53	0 13502	x	x	x	x				x	x	x	
, 7	61 4	55 2	5.5	0.13570	v	27	v	v		v		v	v	v	
, Q	61 9	51.2	7.2	0.13647	N V	v	v	v	v	Λ		v	v	л V	
0	61 0	54.7	7.2	0 12647	л v	л v	л v	л v	л		v	л v	л v	л v	
0	62 0	52.7	/.Z	0.1304/	A V	A V	A V	A V	v	v	Λ	A V	A V	A V	
У О	62.0	55.7	9.1	0.13797	л ,,	л .,	л ,,	л ,,	л	л .,	17	А 17	л ,,	A V	
а'n	e°xas	53.6	9.1	U.13/99 www.anex	X as.r	x net	Х	х		х	Х	Х	х	Х	
consu	iltancy <mark>SE</mark>					-									

Multiple regression steps:

3. Choose the best candidate and complete regression analysis

- 1. Stat> Regression> Best Subsets..
- 2. Fill in the dialog as shown below:
- 3: Press Ok

The regression equation is wet_pu = - 4.75 + 0.0309 RATE + 0.235 noz_pre + 0.00452 vair_pre + 0.0286 ol_%sol - 0.313 ol_ph + 0.758 RAW

Predictor	Coef	SE Coef	Т	Р
Constant	-4.754	2.184	-2.18	0.035
RATE	0.03093	0.01245	2.48	0.017
noz_pre	0.23479	0.05661	4.15	0.000
vair_pre	0.004525	0.003571	1.27	0.212
ol_%sol	0.02865	0.01470	1.95	0.058
ol_ph	-0.31336	0.09312	-3.37	0.002
RAW	0.7576	0.2142	3.54	0.001

S = 0.1342 R-Sq = 61.4% R-Sq(adj) = 56.1%

Multiple regression steps:

4. Perform model diagnostics to identify outliers and unusual observations

Outliers/ Unusual Observations

		SRES1	HI1	COOK1
	6	2.73754	0.100785	0.119993
	7	0.64728	0.117710	0.007985
	8	-0.75073	0.140894	0.013204
	9	2.60919	0.082681	0.087660
	10	0.08823	0.121181	0.000153
	11	-1.95640	0.184598	0.123786
	12	0.06623	0.050418	0.000033
	13	-0.54417	0.049358	0.002196
	14	-2.60239	0.048948	0.049794
	15	-1.43050	0.044407	0.013585
	16	-0.19782	0.084059	0.000513
	17	0.52585	0.163286	0.007709
	18	-0.30950	0.072739	0.001073
	19	-0.70209	0.090436	0.007001
	20	0.58939	0.108930	0.006067
	21	-0.47165	0.054785	0.001842
	22	0.36363	0.058157	0.001166
	23	-0.13536	0.139829	0.000426
	24	-0.26053	0.093215	0.000997
	25	1.83274	0.418808	0.345778
X	26	-0.76024	0.423783	0.060724
_				

Potential trouble spots: Standardized residual>2 Leverage > 2p/n = 0.3529 Cook's distance > 1

What actions should be taken with the outliers and influential observations?

97 0.00607 0.940779 0.000949

ane

consulte
Example: Alumina Deposition

Multiple regression steps:

5. Analyze residuals for violation of assumptions

Example: Alumina Deposition - Residual Plot Analysis

You are a Six Sigma Black Belt team working for Sigma Soft, a successful software company with locations in New York, Seattle and Phoenix.

Recently, complaints were filed by three software specialists at Sigma Soft's Seattle office alleging they are victims of discriminatory salary practices. Specifically, the three employees charge that salaries at Sigma Soft are based on social networking abilities and gender bias.

Sigma Soft prides itself on having a fair and equitable corporate citizenship. Understandably, the company is taking the accusations very seriously.

The Executive VP of human resources has asked your Six Sigma Black Belt team to investigate the issues surrounding the employees' complaints and determine their validity.

During a preliminary investigation you discovered the controversy was triggered in part by a recent magazine article on software specialists. Among other things, the article alleged that women software specialists with similar education and experience as male counterparts received 20% less financial compensation.

Following statistics were also published in the magazine article regarding disparity in compensation for software specialists at different geographical locations:

COMPENSATION STATISTIC	CS FOR SOFTV		ST
LOCATION	New York	Seattle	
Average Compensation, \$	\$140,000	\$105,000	
Average IS experience	9.2 years	9.2 years	

The personnel profiles on the three employees lodging complaints against Sigma Soft are as follows.

COMPENSATIO	N DATA FOR SC	FTWARE SPEC	IALISTS
	Employee1	Employee2	Employee3
Compensation, \$	72,000	90,000	94,100
IS experience	7 years	10 years	11 years
Education	MS	BS	BS
Other experience	3 years	3 years	1 year
Sex	Female	Female	Female
Age	35	33	30

In addition your team has obtained compensation information (*salary.mtw*) for comparable positions in three software companies, including Sigma Soft and two competitors.

Team breakout exercise:

- How is your team going to approach the problem? Create a list of practical questions that will aid in your investigation.
- Create a flipchart for your thought processes.

Data in **salary.mtw**

- Utilize the compensation data to analyze the issues and determine the validity of the employees' complaints as well as the magazine's claims.
 - Is the magazine information regarding average compensation and gender bias accurate?
 - Is there a difference in salaries between men and women at Sigma Soft?
 - Is there a difference in salaries between women at Sigma Soft and women in the other software companies?
- Establish a multiple regression model to predict a software specialist's salary using input variables.
 - Perform model diagnostics to detect any outliers or unusual observations.
 - Validate any assumptions used in creating the multiple regression model
- Utilize the regression model to predict the salaries of the three employees making accusations against Sigma Soft.
- Are the employees' complaints valid?
- Are salaries at Sigma Soft gender biased?

Anexas Consultancy Services

Logistic Regression Analysis

Discrete Ys

Days Between Maintenance and Chances of Good Start-Ups

- Suppose you work on a chemical blending process for a smallvolume, highly regulated product
- It is a one-shift operation and you must shut down and clean the blender at the end of each day
- There is no preventive maintenance schedule in place: maintenance is called after certain mechanical problems are observed and procedures are done at the end of the shift
- You are interested in establishing a preventive maintenance schedule and would like to learn how many days you can go between maintenance procedures and still have a chance of a good start-up each day (machine starts on first attempt)

Days Between Maintenance and Chances of Good Start-Ups, cont.

- You check the log for the last 89 maintenance procedures
 - What data would you collect to answer this question?
 - How would you display them?
 - Can you predict an attribute outcome (yes/no) with a continuous variable?

Days Between Maintenance and Chances of Good Start-Ups, cont.

Maintenance <u>Procedure</u>	Days Prior to Maintenance	Good Start-Up First <u>Run Next Day?</u>
1	2	Yes
2	1	Yes
3	7	No
4	2	Yes
5	5	No
•	•	•
86	2	Yes
87	4	No
88	2	Yes
89	3	Yes

Possible Ways to Display Discrete Y-Data

1. Scatter plot of raw data

- Inappropriate data for scatter plot—Y is discrete-attribute, not continuous
- Thus, the plot is not useful; cannot understand relationship or make predictions based on this pattern

2. Stratified dot plot

- Useful
- Can start to see patterns that reveal information about the relationship

Days Prior to Maintenance

Possible Ways to Display Discrete Y-Data, cont.

3. Scatter plot of summarized data

- Very useful
- Can pick out patterns to help us answer our question

Use Proportions for Discrete Data

- Logistic regression predicts the proportion or probability of a particular Y attribute
- In other words, you would like to know the percent of times the chemical blender works right the first run of the day after a maintenance procedure

Raw Data

	Maintenanc Procedure	e (X) Days Prior to Maint	(Y) Good Start-Up	A particular Y-attribute
X = continuous	1	2	Yes	
data	2	1	Yes	
Y = discrete	3	7	No	
attribute data				
	87	4	No	
	88	2	Yes	
	89	3	Yes	
	L		-	

Appropriate Data for Y in Logistic Regression

Type of data for Y

- Discrete, attribute
- Two levels only
 - "Success"
 - "Failure"
- Choose one and call it an event
 - People are usually more interested in successes, but you can just as easily predict failures
 - Minitab will want to know which level interests you and will call it the "event" (of interest)

Linear Regression Vs Logistic Regression

Logistic Regression Fits a Curve to the Data

The relationship between an event probability (p) and a predictor (X) is usually curved, not straight

- It looks like a tilted "S," backward "S," or some portion of an "S"
- It has asymptotes at 0 and 1

Logistic Regression Fits a Curve to the Data, cont.

Maintenance example

- The proportion of good start-ups decreases as the days prior to maintenance increase, but not at a constant rate
- Draw a curve that might fit the points on this plot

How Does Logistic Regression Work?

- The Y-variable is actually P, the proportion of Y-attributes at each X-value
- The logit transformation straightens the S-shaped relationship between P and X

Logistic regression gets its name from this transformation

Doing Logistic Regression

- We will use Minitab to:
 - Obtain b_0 and b_1
 - Back-transform the fits to obtain predicted P's (event probabilities or EPROs) for each value of X
- Logistic regression is an advanced topic
 - Much of Minitab's output is beyond the scope of this course
 - The interpretation of b_1 is not simple
 - We will use plots of the back-transformed fits vs. X to interpret the relationship

Anexas Consultancy Services

Regression Analysis

Logistic Regression with Discrete Y's

Minitab Follow-Along: Logistic Regression

Data: PrevMain.mtw

1. Do a logistic regression analysis on the "Good Start-ups" predicted from "Days Prior to Maint.":

Stat > Regression > Binary Logistic Regression

Minitab Follow-Along: Logistic Regression, cont.

2. Store the fitted Y's (known as event probabilities) to make a fitted line plot later:

Stat > Regression > Binary Logistic Regression > Storage

Minitab Output: Logistic Regression

Response ini	formation				ſ	Loaistic	rearessi	on equation:	
GoodStartups	Event	52				p		en equation	
Procedures	Non-event Total	z 37 89				In <u>-</u> (1 -	— = 2.82 p)	– 0.858(Days F	Prio
Logistic Regr	ession Tab	ole							
Predictor Constant DaysPriortoMa	2.8 -0.85	Coef SE 82120 0.61 58419 0.19	Coef 7574 96212	Z P 4.57 0.000 -4.37 0.000	Odds 9 Ratio Lowe	5% CI r Upper 9 0.62	Both slo	ope and interc	cep
LogLikelihood Test that all	d = 44.643 slopes ar	re zero: G	= 31.5	555, DF = 1, PVa	alue = 0.00	0	are sign	nificant	_
GoodnessofFit	Tests			\frown				i	
Method	C	ChiSquare	DF	Р		Testino	g for a lac	ck of fit (curve)
Pearson		9.772	7	0.202		throug	h noints)	Since $\dot{P} > 0$	05
Deviance		8.497	7	0.291 🔶					
HosmerLemesho	W	5.769	3	0.123		conciu	ide no lac	ck of fit in any	OT
						throa t	ooto		
Table of Obse	erved and E	Expected Fr	requent	cies:		uneer	ESIS .		
Table of Obse (See HosmerLe	erved and E emeshow Tes	Expected Fr st for the	requenc Pearso	cies: on ChiSquare Sta	atistic)	uneer		1	
Table of Obse (See HosmerLe	erved and E emeshow Tes Gr	Expected Fr st for the coup	requenc Pearso	cies: on ChiSquare Sta	atistic)	uneer			
Table of Obse (See HosmerLe 'Value 1 Success	erved and E emeshow Tes Gr 2	Expected Fr st for the coup 3 4	requend Pearso 5	cies: on ChiSquare Sta Total	atistic)				
Table of Obse (See HosmerLe 'Value 1 Success Obs 2	erved and E emeshow Tes Gr 2 8	Expected Fr st for the coup 3 4 4 12	requend Pearso 5 26	cies: on ChiSquare Sta Total 52	atistic)	uneer			
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure	erved and E emeshow Tes 2 8 4 6.7	Expected Fr st for the coup 3 4 4 12 6.7 13.5	Pearso 5 26 23.7	cies: on ChiSquare Sta Total 52	atistic)				
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure Obs 11	erved and E emeshow Tes 2 4 6.7 11	Expected Fr st for the coup 3 4 4 12 6.7 13.5 8 6	26 23.7	cies: on ChiSquare Sta Total 52 37	atistic)				
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure Obs 11 Exp 11.	erved and E emeshow Tes 2 4 6.7 11 6 12.3	Expected Fr st for the coup 3 4 4 12 6.7 13.5 8 6 5.3 4.5	26 23.7 1 3.3	cies: on ChiSquare Sta Total 52 37	atistic)				
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure Obs 11 Exp 11. Total 13	erved and E emeshow Tes 2 4 6.7 11 6 12.3 19 1	Expected Fr st for the coup 3 4 4 12 6.7 13.5 8 6 5.3 4.5 .2 18	26 26 23.7 1 3.3 27	cies: on ChiSquare Sta Total 52 37 89	atistic)				
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure Obs 11 Exp 11. Total 13 Measures of A	erved and E emeshow Tes 2 4 6.7 11 6 12.3 19 1 association	Expected Fr st for the coup 3 4 4 12 6.7 13.5 8 6 5.3 4.5 .2 18 1:	26 23.7 1 3.3 27	cies: on ChiSquare Sta Total 52 37 89	atistic)				
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure Obs 11 Exp 11. Total 13 Measures of A (Between the	erved and E emeshow Tes 2 4 6.7 11 6 12.3 19 1 Association Response V	Expected Fr st for the coup 3 4 4 12 6.7 13.5 8 6 5.3 4.5 .2 18 1: Variable ar	Pearso 5 26 23.7 1 3.3 27 ad Preo	cies: on ChiSquare Sta Total 52 37 89 dicted Probabil:	atistic) ities)				
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure Obs 11 Exp 11. Total 13 Measures of A (Between the Pairs	erved and E emeshow Tes 2 4 6.7 11 6 12.3 19 1 Association Response V Number	Expected Fr st for the coup 3 4 4 12 6.7 13.5 8 6 5.3 4.5 2 18 1: Variable ar Percent	Pearso 5 26 23.7 1 3.3 27 nd Preo Sur	cies: on ChiSquare Sta Total 52 37 89 dicted Probabil: mmary Measures	atistic) ities)				
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure Obs 11 Exp 11. Total 13 Measures of A (Between the Pairs Concordant	erved and E emeshow Tes 2 8 4 6.7 11 6 12.3 19 1 Association Response V Number 1483	Expected Fr st for the coup 3 4 4 12 6.7 13.5 8 6 5.3 4.5 .2 18 Nariable ar Percent 77.1%	Pearso 5 26 23.7 1 3.3 27 nd Preo Sur Sor	cies: on ChiSquare Sta Total 52 37 89 dicted Probabil: nmary Measures ners' D	atistic) ities)				
Table of Obse (See HosmerLe Value 1 Success Obs 2 Exp 1. Failure Obs 11 Exp 11. Total 13 Measures of A (Between the Pairs Concordant Discordant	erved and E emeshow Tes 2 4 6.7 11 6 12.3 19 1 Association Response V Number 1483 217 224	Expected Fr st for the coup 3 4 4 12 6.7 13.5 8 6 5.3 4.5 .2 18 Nariable ar Percent 77.1% 11.3% 11.6%	Pearso 5 26 23.7 1 3.3 27 nd Preo Sur Sor Goo	cies: on ChiSquare Sta Total 52 37 89 dicted Probabil: mmary Measures mers' D odmanKruskal Gar	atistic) ities) nma 0.74 0.22				

Beyond scope of course

Minitab Follow-Along: Logistic Regression, cont.

3. Make a fitted curve plot for the data:

Graph > Scatter plot > Simple

Scatterplot - Simple	×	
C1 DaysPriortoMaint C2 Procedures C3 GoodStartups C4 %GoodStartups C5 EPR01	Y variables Y variables 1 '%GoodStartu DaysPriortoM 2 EPR01 DaysPriortoM 3	Scatterplot - Multiple Graphs
Select	Multiple Graphs	O in separate graphs
Help	<u>O</u> K Cancel	Same Scales for Graphs
		Help OK Cancel

Minitab Follow-Along: Logistic Regression, cont.

Conclusion: If you schedule maintenance every two days, you'll have a 75% chance of a good start-up the next day.

Anexas Consultancy Services

Regression Analysis

Logistic Regression with Discrete Y's

Multiple Logistic Regression

- You can try to improve the prediction of event probabilities by using several predictors (X's), not just one
 - The predictors (X's) can be either continuous or discrete
 - The multiple logistic regression equation is

$$\log_{e}\left(\frac{p}{1-p}\right) = b_{0} + b_{1}X_{1} + b_{2}X_{2} + ... b_{k}X_{k}$$

- If any of the X's are discrete (in groups), you must designate one group to be the reference group
- The coefficient for a discrete X group compares its intercept with the reference group (see discussion in previous section)
- Multiple logistic regression is useful for identifying key drivers (X's), particularly those that affect Y (event probabilities) in combination with each other

Practice: Applications of Logistic Regression

- Objective: Practice identifying predictor variables for logistic regression situations
- Instructions:
 - Circle the outcome you would define as a "success" for each discrete Y
 - List some possible predictors
- **Time:** 5 minutes

Discrete Y's	Predictors (X's)
Shipment is on time or late	
Customer buys product or not	
Deal was won or lost	
Customer retained this year or not	
Product works or not	
Machine breaks down or not	

Answers: Applications of Logistic Regression

Discrete Y's	Predictors (X's)
Shipment is on time or late	Size of orderNumber of other orders in queue
Customer buys product or not	Product pricePresence of CTQ
Deal was won or lost	CostExperience level of company representative
Customer retained this year or not	 Length of time with company Amount price increased or decreased
Product works or not	Number of defectsQuality of materials
Machine breaks down or not	Type of maintenance procedure usedExperience level of maintenance operator

Exercise: Do a Multiple Logistic Regression (Part 1)

- Objective: Practice doing a multiple logistic regression in Minitab and interpreting the results
- Data: *Retain.mtw*

Background:

- Suppose you work for a company that manufactures custom and standard surgical devices for doctors; competition in this market is fierce
- You are interested in finding the key factors that help predict whether your company will retain a customer next year or not
- Last year's data on 63 customers are given below
- The event of interest is "customers kept"
- Q-Score range is 1 10, 1 being the best score and 10 is worst
- **Time:** 25 minutes

Exercise: Do a Multiple Logistic Regression (Part 1), cont.

Instructions:

- Work in pairs
- Open the appropriate Minitab window and enter the answers to questions 1 through 4 before proceeding

Stat > Regression > Binary Logistic Regression

- 1. Which variable is Y?
- 2. Are these raw data or a summary table of counts?
 - Choose the appropriate data format in Minitab
- 3. How many predictors (X's) are there?
 - List each in Minitab's "Model" box
- 4. How many of the predictors (X's) are discrete?
 - List only the discrete X's in Minitab's optional "Factors" box

Answers: Do a Multiple Logistic Regression (Part 1)

Results for Questions 1 through 4

- 1. Y variable = Retained
- 2. Raw data or summary? Raw data
- 3. How many predictors are there? Five
- 4. How many predictors are discrete?One (Product type)

This is what your Minitab window should look like so far

	Response in response/frequency for	mat	
	Respo <u>n</u> se: Retained		
	Frequency (optional):		
	O Response in event/trial format		
	Number of events:		
	Number of trials:		
	Model:		
	'Prod-Type' Salescalls Age '%Discount'	'Q-Score'	4
	Eactors (optional):		
Salart	'Prod-Type'		4
Jener	G	raphs Options.	
	R	esults <u>S</u> torage	
	······		

Exercise: Do a Multiple Logistic Regression (Part 2)

- Select the Options button in Minitab and designate:
 - a. The event of interest
 - Select the Options button; type in the event of interest in double quotes in the box labeled "A" below
 - b. The reference group (or the discrete X)
 - Type the factor name followed by the level of X that you want to be the reference group in the box labeled "B" below
 - Type the factor name in single quotes and the level in double quotes

a. If this box is left empty, the default event becomes the one in **last** alphabetical order; in this case the default would be "lost."

b. Use double quotes for discrete X reference group if it is text. If this box is left empty, the default reference group becomes the **first** one in alphabetical order; in this case the default is "custom."

Exercise: Do a Multiple Logistic Regression (Part 2), cont.

- Select the Storage button in Minitab and check "Event probability" to store it so you can make plots with it
 - This is the same as the fits in regular regression

Exercise: Do a Multiple Logistic Regression (Part 2), cont.

- 5. Which predictors (X's) help explain whether a customer will be kept or lost?
- 6. Remove the non-significant predictors (X's) and redo the multiple logistic regression
 - a. Be prepared to report an interpretation of the output to the whole group
 - b. Which type of product has the greatest probability of retaining customers?

Exercise: Do a Multiple Logistic Regression (Part 2), cont.

7. a. Create a scatter plot of predicted event probabilities vs. the significant X-values; stratify by the discrete X groups

Graph > Scatter plot

b. Interpret the plot

Scatterplot - With Groups C1 Customer C2 Retained C3 Prod-Type C4 Salescalls C5 Age C6 %Discount C7 Q-Score C9 EPRO2	S Y variables 1 EPRO2 2 3 4 5 4 Categorical variables fo	s X variables ▲ 'Q-Score' ▼ r grouping (0-3):	
	X-Y pairs form groups		
Select	Scale	Labels	Data View
	Multiple Graphs	Data Options]
Help		ОК	Cancel

Answers: Do a Multiple Logistic Regression (Part 2)

Minitab output for full model

	Binary Logistic Regression: Retained versus ProdType, Salescalls, Link Function: Logit						
	Response Information						
Product type is discrete. Recall that "Standard" is the reference product.	Variable Value Count Retained Kept 47 (Event) Lost 14 Total 61						
In this regression, this is the slope adjustment for "Custom," relative	* NOTE * 61 cases were used * NOTE * 2 cases contained missing values						
to "Standard."	Logistic Regression Table						
	Odds95% CIPredictorCoefSE CoefZPConstant1.9593.0560.640.522Odds						
	ProdTyp Custom 2.218 1.152 1.92 0.054 9.18 0.96 87.89 Salescal 0.1157 0.1133 1.02 0.307 1.12 0.90 1.40						
	Age 0.3737 0.2873 1.30 0.193 1.43 0.83 2.33 %Discoun 0.1416 0.1927 0.73 0.463 1.15 0.79 1.68 QScore 0.7476 0.2508 2.98 0.03 0.47 0.29 0.77						
	LogLikelihood = 19.518						
Two significant predictors (X's)	Test that all slopes are zero: $G = 26.683$, $DF = 5$, $PValue = 0.000$ GoodnessofFit Tests						
	MethodChiSquareDFPPearson46.617500.610Deviance39.036500.869HosmerLemeshow2.97880.936						
	[Some output deleted to save space (and it is all beyond the scope of this course).]						
	www.anexas.net R 01	722					

Answers: Do a Multiple Logistic Regression (Part 2), cont.

Question 5: Answer (cont.)

- Product type and Q-Score are significant predictors of whether or not we will retain customers next year
- We will remove the non-significant predictors (X's) and redo the regression

Answers: Do a Multiple Logistic Regression (Part 2), cont.

Question 6: Output for reduced model

	Binary Logistic Regression: Retained versus ProdType, QScore							
The positive coefficient means that we have a higher chance of retaining customers who	Link Function: Logit Response Information							
purchase custom products than	Variable Value Count							
we have of retaining customers who purchase standard products.	Retained Kept 48 (Event) Lost 15 Total 63							
	Logistic Pogrossion Table							
	Odds 95% CI							
	PredictorCoefSECoefZPRatioLowerUpperConstant5.8101.7673.290.001							
	ProdTyp Custom 1.7091 0.8840 1.93 0.053 5.52 0.98 31.24 QScore 0.8672 0.2398 3.62 0.000 0.42 0.26 0.67							
The negative coefficient correlates	LogLikelihood = 22.403 Test that all slopes are zero: G = 24.352, DF = 2, PValue = 0.000							
to the probability of keeping the customer. As the Q-Score	GoodnessofFit Tests							
increases, the chance of keeping	Method ChiSquare DF P							
the customer decreases. (Low Q-	Pearson 21.240 13 0.068							
Scores are good.)	Deviance 16.272 13 0.235 HosmerLemeshow 2.206 4 0.698							
	[Some output removed.]							

Answers: Do a Multiple Logistic Regression (Part 2), cont.

Question 7: Scatter plot

Conclusions from scatter plot

 Your chance of keeping customers who purchase standard products decreases sharply with a quality score (QScore) of six or higher

 Overall, you have a better chance of keeping customers who purchase custom products

Applications to Your Business

- Objective: Practice identifying applications of logistic regression in your business
- Instructions:
 - Work alone or, if there are other participants whose work is related to yours, in pairs or small groups
 - Think of a discrete Y-variable—an output or result that has a particular attribute that interests you
 - List some possible predictors of the attribute
 - Would logistic regression be useful to you? Why or why not?
 - Volunteers will be asked to share with the whole group
- **Time:** 5 minutes

Anexas Consultancy Services

Process Analysis (Lean)

Identifying Causes with Process Maps

You Are Here

Anexas Consultancy Services

Identify the Value-Added Path

"The Happy Path"

Process Mapping

www.anexas.net

Value-Added and Non-Value-Added Steps

- Value-added steps:
 - Customers are willing to pay for it
 - Physically change the product
 - Are done right the first time
- Non-value-added steps:
 - Not essential to produce output
 - Include:
 - Defects, errors, omissions
 - Preparation/setup, control/inspection
 - Overproduction, processing, inventory
 - Transporting, motion, waiting, delays

Opportunity Process Map Features

732

Anexas Consultancy Services

Identifying Flow Issues

Waste

Major Categories of Waste: TIMWOOD

Anexas Consultancy Services

Identifying Flow Issues

Cycle Time

Value Analysis Matrix

- You can track specific types of non-value-added time with a value analysis matrix
- This helps clarify not only the types of waste present in the process, but also the percentage of the overall process that each non-value-added step adds

Process step	1	2	3	4	5	6	7	8	9	10	Total	%Total
Time (hours)	12	10	1	10	20	6	10	1	10	20	100	100%
Value-added											2	2%
Non-value-added												
Fixing errors									✓		10	10%
Prep/set-up												
Control/inspection						✓					6	6%
Delay											52	52%
Transporting/motion		✓		✓			✓				30	30%
Total											100	100%

Anexas Consultancy Services

The Value Stream

```
Work as a System
```

Making improvements that last requires us to see work as a system—the result of a series of interactive functions, operations, methods, and processes

Quality, Systems, and Processes

- Quality is judged by customers based on the output of a process or the system
- Focusing only on the individual worker will not lead to greatly improved quality that lasts
- To improve quality, the processes and system must be improved
- Simply focusing on or defining a process or the system is not improvement—we have to make changes and use data to show the change is improvement

The Real Organization

- Products and services for customers are not produced by functions, but by processes that tend to cross functional lines
- Some of these processes tend to be the way customers identify with the company
- Functions are (or should be) the residence and building place for competencies
- Process capabilities and competencies are the key leverage points to achieve strategy (desired state of the organization)

What Is the Value Stream?

The value stream is the entire set of activities required to bring a product or service into the hands of the customer¹

¹ From *Lean Thinking*, Womack and Jones, 1996.

What Is the Value Stream?, cont.

Value streams can be defined for any industry

Value Stream and Customer Requirements

- The value stream exists to provide products and services that meet the customer requirements
- Understanding customer requirements is critical to the value stream mapping process

What Is a Value Stream Map (VSM)?

A workflow visualization tool for representing how customer needs are met

- By showing the flow of materials and information, waste is easier to see and opportunities to improve are easier to identify
- A picture of the entire value stream:
 - Includes material and information flows
 - Can be applied to any industry, product, or service
 - Is a paper-and-pencil technique

Example: High-Level Value Stream—Appliance Sales and Installation

Selecting a Value Stream

- Maintain a customer focus
- Select a product/service family
- Stay narrowly focused; create the flow for one product family or one service at a time

Financial Services Company Service Families

Credit cards Auto loans Direct banking Commercial loans

Truck and Railcar Loading Manufacturer Product Families

Loading racks and platforms Loading arms Fall prevention systems

Origin of Value Stream Mapping

- Originated as part of Lean production concepts
- Originated in Japan as part of the Toyota Production System
- Originally called "material and information flow"
- Popularized in U.S. with the development of Toyota Supplier Support Centers (1990s–present)
- Method was documented and published in the U.S. in 1999 under the term "value stream mapping"

Exercise: Identifying a High-Level Value Stream

• **Objective:** Identify a value stream for your workplace

Instructions:

- Work individually
- Select a product or service family in your work area, department, or enterprise
- Use the template to document the value stream
- Note that for this exercise, we are interested in identifying just the value stream itself, not all of the details we will add later
- Be prepared to share with the larger group
- **Time:** 15 minutes

Exercise: Identifying a High-Level Value Stream, cont.

High-Level Value Stream

Can you identify waste and improvement opportunities from the high level?

More detail is needed in order to be useful.

Anexas Consultancy Services

Comprehensive Value Stream Maps

Elements of Comprehensive Value Stream Maps

- Supplier capabilities
- Process requirements and timing
- Process performance data
- Customer requirements
- Required production control/service scheduling information
- Indication of how the product/service flow is pulled and leveled through the processes
- Stated objectives of total efficiency

Example: Comprehensive VSM—Appliance Sales and Installation

Example: Manufacturing

consultancy <mark>SE</mark>

R 01 754

Example: Healthcare

anexas consultancy se

What's Different About Value Stream Mapping?

- Broader range of information gathered and displayed
- Broader scope (from door to door)
- Typically a higher level view than most process maps
- Future oriented
- Used as a strategic business planning tool to manage a change process

Basic Symbols for Value Stream Maps

- Value stream maps use symbols as abbreviations
- Basic symbols can be used for any value stream, whether manufacturing, administrative, transactional, etc.
- Some symbols may be generic for a particular type of industry
- Some organizations have symbols that are specific to that organization

Basic Symbols for Value Stream Maps, cont.

Use a wide arrow to show finished goods or services to the customer

Use arrows on all lines to show clear direction of flow

Indicates electronic communication

Indicates process (i.e., assembling, underwriting, etc.); each box represents one process

Indicates "stores" of shelves; accumulation location for parts/materials, documents, or emails directly following a process or operation with predetermined quantity requirements

Icon may be used to represent customer or supplier

758

Basic Symbols for Value Stream Maps, cont.

Transportation, shipping, or delivery icon: information inside box designates frequency of delivery

Signaling cards (kanban): signaling pull of work from process downstream

Data box: contains performance data for the particular process

Indicates the timeline: the total time the product or service flows through system—lead time

Basic Symbols for Value Stream Maps, cont.

Denotes inventory waiting for the next process

Denotes work waiting in queue for the next process

Denotes electronic storage

Denotes opportunity for improvement

Represents a person

Benefits of Value Stream Mapping

- Forces improvement on the whole, not just on optimizing individual processes
- Provides a common language for talking about processes
- Creates common understanding of how value is produced
- Helps employees see how their function or process fits into the overall value stream
- Visually identifies where waste occurs
- Helps to focus improvement efforts
- Shows linkage between product/service flow and information flow
- Shows performance data

See the Waste in the Value Stream

What to Look for

- When you are analyzing your current state map, you are looking for opportunities to reduce or eliminate the waste
- Many issues become apparent just by creating a visual

Exercise: See the Waste

Objective: Practice identifying waste using a current state value stream map

Instructions:

- Use either:
 - A value stream map from your own organization
 - The example provided by the instructor
- Identify waste and opportunities for improvement
 - What, if anything, can you see with a value stream map you could not see using the types of waste?
- Be prepared to report out
- Time: 15 minutes

Summary

- The value stream is the entire set of activities required to bring a product or service into the hands of the customer¹
- Value streams are typically created for a single product or service family
- A current state map makes the flow of work visible and helps you see the waste

¹From *Lean Thinking*, Womack and Jones, 1996.

Summary, cont.

- Value stream maps may look very different depending on the value stream and the industry
- Future state value stream maps are used after specific Lean approaches or solutions have been identified

ANALYZE: Analyze to Identify Causes

Review

You Are Here—ANALYZE

www.anexas.net

ANALYZE Phase Deliverables

- Cause-and-effect analysis to identify potential causes (inputs or X's)
- Analysis of inputs to identify and prioritize the key inputs or X's affecting the process output(s) Y
- Data collected to validate key inputs or X's
- Graphical (and statistical) analysis of data to determine relationships
- Reduced list of potential key inputs that affect the output(s) Y (refined cause-and-effect analysis)

ANALYZE Phase Deliverables, cont.

- Evidence linking the key inputs to the outputs
- ANALYZE section of storyboard completed
- ANALYZE phase discussed and agreed on with sponsor and coach
- ANALYZE deliverables completed and phase approved

ANALYZE Checklist

- By the end of the ANALYZE phase, you should be able to show your sponsor which causes you will focus on in IMPROVE by being able to answer the following questions. Please check!:
 - What potential causes (X's) have you identified for each focused problem statement?
 - Which potential causes have you decided to investigate, and why?
 - How have you verified causes?
 - What data has been used? How, when and where was it collected?
 - What is the data showing?

ANALYZE Checklist, cont.

- By the end of the ANALYZE phase, you should be able to show your sponsor which causes you will focus on in IMPROVE by being able to answer the following questions. Please check!, cont.:
 - Do findings agree with process knowledge?
 - What are the root causes, and how do they affect the process output (Y)?
 - Which of the root causes are within the team's control? Is team makeup still appropriate?
 - What are the proven root causes (critical few) to be tackled in the IMPROVE phase?

IMPROVE: Implement Solutions and Evaluate Results

Overview

You Are Here—IMPROVE

www.anexas.net

IMPROVE: Implement Solutions and Evaluate Results

Goal:

- Develop, try out, and implement solutions that address root causes
- Use data to evaluate both the solutions and the plans used to carry them out

• Output:

- Planned, tested actions that eliminate or reduce the impact of the identified root causes
- Before and after data analysis that shows how much of the initial gap was closed

– A comparison of the plan to actual implementation

Approach to IMPROVE

Generating and Selecting Solutions

You Are Here

Generating and Selecting a Solution Roadmap

Involving People in Developing Solutions

Lean Solutions

Process Improvements: **5S**, Flow, Mistake-Proofing, and SMED

5S

- Sort
- Straighten
- Sweep, wash, clean, and tag abnormalities
- Standardize
- Sustain (housekeeping and tagging)

Keep It Tidy!

Workplace Readiness (5S) Actions and Outcomes Plan

Organization and Safety Worksheet Workplace Readiness (5S) Actions and Outcomes Plan				
Category	Required Action	Desired Outcomes		
Sort	Remove unneeded and unused items from the workplace.	A safe and uncluttered worksite, free of hazards and workarounds.		
Straighten	Arrange worksite tools, equipment, and materials in the most convenient location for process use. Identify, label, color code. Note: Follow the <i>Principles of</i> <i>Safe Human Motion</i>	Tools, equipment, and materials are located within safe and easy reach of use. Waste of motion is at a minimum.		
Sweep, Wash, and Clean	Clean the work area, tools, and equipment – tag equipment abnormalities.	The worksite, required tools, equipment, and materials are clean, defect free, and ready for use.		
Standardize	Document worksite layout, location of tools, equipment, and materials. Establish a plan and team assignments to maintain operational readiness.	A plan with documented graphic layout of the worksite showing the proper location and amounts of all required tools, equipment, and materials, including visual controls and coding, with required team member actions and assignments		
Sustain	Follow the plan. Improve the plan and worksite.	A continuously ready operational worksite; excellent housekeeping.		

Lean Solutions

Process Improvements: 5S, **Flow**, Mistake-Proofing, and SMED

Takt Time: The Pulse of One-Piece Flow

- Takt time is defined as the amount of time available to produce one unit (one-piece flow is paced to takt time):
 - Usually measured in seconds
 - Used to synchronize the process and establish uniform production flow
 - Based on:
 - Anticipated customer demand
 - Time available or scheduled to produce the right amount of product to meet the sales demand

Total production time available

Takt time =

Number of units required to meet customer demand

Workload Balancing

- The balancing of work performed at and between operations is based on human motion and takt time
- The aim is to:
 - Equalize the workload fairly and safely
 - Eliminate unevenness and overburden
 - Facilitate the ability to easily increase or decrease the flow of production based on customer requirement

Benefits of a Balanced Workload

- A balanced workload makes redistribution of work safer, easier, and faster:
 - Manpower and cycle time can be increased or decreased while keeping production smooth and uninterrupted
 - Workload balancing facilitates standardization:
 - Where there is no standard, there can be no sustained improvement
 - Balancing provides a safe and consistent workload
 - Supports level production objectives

ESCAP Analysis

All the process steps are evaluated based ESCAP criteria.

It is checked if following can be done to any of the steps:

- Eliminate
- Simplify
- Combine
- Automate
- Parallel

Lean Solutions

Process Improvements: 5S, Flow, **Mistake-Proofing**, and SMED

Continuum of Devices

	Preventative		Reactive
	Control Device	Warning Device	Shutdown Device
Possible Error	Prevents the cause of an error from occurring	Warns that an error has occurred	Shuts process down when defect occurs
Possible error is the wrong password entered for an ATM transaction	ATM machine only accepts a set number of digits	ATM notifies users that password has been incorrectly entered	ATM transaction is deactivated if user incorrectly enters the password more than three times
Cut wood strips don't meet specifications	Wood strip cutting machine has a stop mechanism that prevents overloading feed material	Alarm sounds if overloading occurs	Machine stops if cut length and width deviate from specifications

Lean Solutions

Process Improvements: 5S, Flow, Mistake-Proofing, and **SMED**

SMED—Rapid Changeover

- Rapid changeover means performing changeovers or operations setup in less than 10 minutes
- Sometimes you will hear this referred to as SMED, for Single Minute Exchange of Die
- Although the concept originated in manufacturing, it can also be applied to services

Anexas Consultancy Services

Generating Solution Alternatives

Generating and Selecting Solution Roadmap

Generating Solution Ideas

- Review what you know about the process and the verified cause
- Brainstorm solution ideas; use creativity techniques
- Combine ideas into solutions

Brainwriting 6-3-5

- Team members brainstorm ideas on a written form:
 - Take 5 minutes to write down three solution ideas on the first row of your form
 - Pass your form to the right
 - On the form you have just received from your team member, add another three ideas on the next row
 - Add ideas by:
 - Enhancing an idea already on the sheet
 - Adding a variation of an idea on the sheet
 - Adding a completely new idea
 - Repeat for as many rounds as you have team members

Round Robin and Anti Solution

Round Robin

- Everyone gets a chance to put forth his/her idea If they do not have to contribute an idea, they just say pass.
- This goes on till all the participants have exhausted their ideas.

Round Robin and Anti Solution

Anti Solution

- Team brainstorms on how to increase the problem rather than solving it.
- The brainstormed ideas are reversed to get the solution.

Anexas Consultancy Services

Evaluating Solution Alternatives

Generating and Selecting Solution Roadmap

Prioritization Tool — Solutions

High	High Priority	Medium Priority		
act				
lmp	Low to Medium Priority	Low Priority		
Low				
	Low Effo	rt	High	
anexas consultancy se		as.net	R 01	801

Solution Selection Matrix

Criteria		Weight	Solution A		Solution B		Solution C		
			Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	
1	cheap solution	3	3	9	9	27	9	27	
2	quick to implement	3	9	27	1	3	3	9	
3	high impact on CTQs	9	9	81	9	81	9	81	
4	compliant	9	1	9	9	81	9	81	
5	change management	3	1	3	3	9	9	27	
6	resource required	1	9	9	3	3	3	3	
TOTAL				138		204		228	

Where **weight** and **scores** on following scale : High = 9, Medium = 3 and Low = 1.

Example :

- Solution A = outsource all data processing
- Solution B = development of our own software
- Solution C = buy a software and adapt to our needs

It seems here that solution C is the most satisfying. B also can be considered as an option.

Summary

- Involve people
- Use creativity techniques to generate alternatives
- Generate and weight criteria
- Evaluate each alternative against the criteria
- Be creative in finding ways to get additional information about a potential solution
- If no clear choice emerges, use consensus decision making

Anexas Consultancy Services

Introduction to the Design of Experiments (DOE)

Module Objectives

By the end of this module, the participant will:

- Understand the strategy behind Design of Experiments (DOE)
- Create a design matrix
- Code factors
- Understand the limitations of OFAT experiments
- Interpret interactions

Why Learn About Design of Experiments?

- Properly designed experiments will improve
- Efficiency in gathering information
 - Planning
 - Resources
- Predictive knowledge of the process
- Ability to optimize process
 - Response
 - Control input costs
- Capability of meeting customer CTQs

What is Design of Experiments ?

- A DOE is a planned set of tests on the response variable(s) (KPOVs) with one or more inputs (factors) (PIVs) each at two or more settings (levels) which will:
- Determine if any factor is significant
- Define prediction equations
- Allow efficient optimization
- Direct activity to rapid process improvements
- Create significant events for analysis

DOE Terminology

- Response (Y, KPOV): the process output linked to the customer CTQ
- Factor (X, PIV): uncontrolled or controlled variable whose influence is being studied
- Level: setting of a factor (+, -, 1, -1, hi, lo, alpha, numeric)
- Treatment Combination (run): setting of all factors to obtain a response
- Replicate: number of times a treatment combination is run (usually randomized)
- Repeat: non-randomized replicate
- Inference Space: operating range of factors under study

DOE Objectives

- Learning the most from as few runs as possible; efficiency is the objective of DOE
- Identifying which factors affect mean, variation, both or none
- Screening a large number of factors down to the vital few
- Modeling the process with a prediction equation:
 Y = f (A,B,C ...)
- Optimizing the factor levels for desired response
- Validating the results through confirmation

Anexas Consultancy Services

DOE Strategy

Strategy of Experimentation

Planning Phase

- Define the problem
- Set the objective
- Select the response(s), Ys
- Select the factors(s), Xs
- Select the factor levels
- Select the DOE design
- Determine sample size
- Run the experiment

Execution Phase

- Collect data
- Analyze data
- Validate results
- Evaluate conclusions
- Revise SOPs
- Train affected workforce
- Document results
- Consider next experiment

Anexas Consultancy Services

Planning Phase

The purpose of an experiment is to better understand the real world, not to understand the experimental data...

William Diamond Statistician, IBM

Define the Problem Step 1

- The problem statement should:
- Be complete and detailed
- Contain no conclusions
- Contain no solutions
- Contain no causes
- Be specific

Well begun is half done...

Mary Poppins

Issues With Problem Definition

- Common problem definition issues
- Response not well defined
- Response not quantifiable
- Response does not link to CTQs
- Specifications not customer focused
- Quantification not based upon data
- Stated as a predetermined solution

Guide your team to unambiguous, executable experiments

Set the Objectives Step 2

- The upfront objectives should
- Define what you want to learn from the experiment
- Support screening, modeling or both
- Look at main effects, interactions or both
- Set boundaries for optimization
- Know resource requirements

Do not use all of your resources on the first experiment

www.anexas.net

Selecting the Response Step 3

A response is the output linked to the customer CTQ

- Usually quantitative (continuous)
 - Yield
 - Level of purity
 - Effort Variance
 - Energy consumed
- May be qualitative (discrete)
 - Bubbles in glass plate
 - Defective Coding
- Comes from Define and Measure Phase
 - Voice of the Customer
 - C&E, FMEA, process map and other

Response Relationship to Other Tools

Selecting the Factors Step 4

A factor is one of the inputs suspected of influencing the response

- May be qualitative (discrete)
 - Different operators
 - Different shifts
 - Different Resources
- May be quantitative (continuous)
 - Pressure
 - Pull back angle
- Comes from Measure and Analyze Phase
 - C&E, FMEA, process map and other
 - Hypothesis testing

consultancy

Response Relationship to Other Tools

www.anexas.net

Selecting the Factor Levels Step 5

The factor levels are the range of values of the input under study

- Qualitative (discrete) inputs
 - operator 1, operator 2, operator 3...
 - shift 1, shift 2, shift 3 …
 - pin loc 1, 2
- Quantitative (continuous) inputs
 - 50 , 75, 100 psi
 - 160, 170, 180 degrees
- Process knowledge/inference space

Consider what works, what could work and what won't hurt

Select the DOE Design Step 6

The selected design should align with the objectives of the experiment and resource commitment

- OFAT (One Factor at a Time)
- 2k-n Fractional Factorial Designs
- 2k Full Factorial
- Full Factorial (replication)
- RSM (response surface method)

Experimental Design Considerations

Higher complexity designs offer greater knowledge at a higher price

www.anexas.net

Determine Sample Size Step 7

- The type of design determines minimum number of samples (replicates/repeats). Considerations for replicates
 - Multiple runs help identify data and measurement errors
 - Screening for main effects requires fewer replicates
 - Modeling designs require more replicates to have confidence in prediction models
 - Detectable effect
 - Resources

Two Level Sample Size

Provides greater than 99% confidence in mean and 95% confidence in variance prediction models

www.anexas.net

Run the Experiment Step 8

- Manage resources
 - Assign tasks
 - Stage supplies
- Have contingency plan
 - Personnel changes
 - Business changes
 - Botched runs
- Statistical common sense
 - Randomize runs if possible
 - Replicate and/or repeat

DOE Strategy Exercise

- Break into table teams. Select two projects at each table (one industrial process and one business process).
 Using flip charts list the Planning Phase elements for each project.
- Be prepared to discuss your learnings.

Anexas Consultancy Services

Factors

Factors and the Process

DOE can be applied to both business and industrial processes

www.anexas.net
Organizing the Factors

 The best conceived experiment will fail if executed poorly. Defining the factor settings and capturing the process response(s) properly is paramount to a successful DOE.

	INPUT FACTORS			OUTPUT RESPONSE REPLICATES				STATISTCAL ANALYSIS		
RUN	X 1	X ₂	X ₃	Y ₁	Y ₂	-	-	Yn	Ybar	S
1										
2										
3										
4										
-										
-										
-										
n										

A matrix that clearly defines the input settings to the output response showing the flow of the experiment is a must

Factors at Two Levels

Many experiments will be quite successful when only two levels of each factor are studied.

	INDUT EACTORS			(OUTPU	T RES	PONS	Ε	STATI	STCAL
	INFU		IUKS	REPLICATES				ANALYSIS		
RUN	X 1	X 2	X 3	Y ₁	Y ₂	-	-	Yn	Ybar	S
1	234	1	0.0345						11	1.46
2	116	1	0.0737	Exporimontal Data				14	2.03	
3	234	2	0.0737		LAPETIMEITAI Data				9	2.18
4	116	2	0.0345	Placed Here				16	4.22	
-				L						
-										
-										
n										

The matrix of inputs should be arranged to reduce or eliminate correlation between factors

Anexas Consultancy Services

Coding

Factors and Scale of Units

Concept of Coding

consultancy

Coding Three Factors

Class Coding Exercise

Transform the uncoded factor levels to coded factor levels using "+" and "-"

	UNCODED INPUT			CODED INPUT		OUTPUT			STATISTCAL		
	F/	ACTO	RS	FACTORS		RESPONSE			ANALYSIS		
RUN	X 1	X 2	X 3	X 1	X2	X 3	Y ₁	Y ₂	Yn	Ybar	S
1	234	1	0.0345							11	1.46
2	116	1	0.0737							14	2.03
3	116	2	0.0737							9	2.18
4	234	2	0.0345							16	4.22
-											
-											
-											
n											

Why Code?

- Allows experimenter to focus on the design
- Shows the design generation clearly
- Permits easier mathematical analysis
- Produces fewer data entry errors
- Reduces analysis errors
- Manages magnitude of scale

Coding is the standard practice for experimental design

Anexas Consultancy Services

Exploring Factor Effects

How Factors Affect a Response

Which factors affect mean or variation?

Anexas Consultancy Services

One Factor at a Time (OFAT) Experiments

One Factor at a Time

 A process has two variable inputs: flow and temperature. Historically the process has run with flow = 18 and temp = 160 with a yield of 81.7%.

Flow	Temp	Yield
18	140	71.4
18	145	74.8
18	150	78.3
18	155	79.4
- 18	160	81.7
18	165	82.8
18	170	84.0
18	175	84.5
18	180	84.2
18	185	83.3
18	190	80.5
18	195	78.3
18	200	76.0

One Factor at a Time Data Analysis First Step

	Flow	Temp	Yield
	18	140	71.4
	18	145	74.8
	18	150	78.3
Old setting	18	155	79.4
	18	160	81.7
Nousoattina	18	165	82.8
New setting	18	170	64.0
	18	175	84.5
	18	180	84.2
	18	185	83.3
	18	190	80.5
	18	195	78.3
	18	200	76.0

Higher yield is obtainable, but at a higher temperature (cost)

Data is used for a regression analysis

One Factor at a Time Data Analysis Second Step

Regression analysis provides an equation which can be solved for temperature

Another test is planned to study flow at the "optimum" temperature of 174.4°C

One Factor at a Time Data Analysis Third Step

	Flow	Temp	Yield
	2	174.4	65.5
	4	174.4	65.5
	6	174.4	77.8
	8	174.4	84.8
New setting	10	174.4	90.8
	12	174.4	91.8
	14	174.4	89.8
Old setting	16	174.4	88.8
	18	174.4	84.5
	20	174.4	82.8
	22	174.4	74.2
	24	174.4	58.8
	26	174.4	40.8

Higher yield at lower flow is found, but is this the true optimum?

Data is used for a regression analysis

One Factor at a Time Data Analysis Fourth Step

Regression analysis provides equation which can be solved for flow

$Y = 46.437 + 7.195 Flow - 0.2786 Flow^2$

Another test is planned to study temp at the "optimum" flow of 12.9 lpm

One Factor at a Time Data Analysis Fifth Step

- Repeat steps 1 4 until satisfied "optimum" is found
- Each cycle will produce an equation for yield versus temperature
- Each cycle will produce an equation for yield versus flow
- Solve equations iteratively
- Repeat cycle, obtaining NEW equations

OFAT Equations

- Each cycle produces a set of independent, simultaneous equations describing the process
- First cycle:

 $Y = -263.79 + 4.012Temp - 0.011566Temp^{2}$ $Y = 46.437 + 7.195Flow - 0.2786Flow^{2}$

• Subsequent cycles:

OFAT will generate a family of independent prediction equations that do not readily lead to the optimum solution

OFAT Prediction Contours

One factor at a time presumes a nested family of responses

Factor interactions are missed with OFAT

Process Response Contours

More often than not, the response contours of a process contain many peaks and valleys created by the interaction of factors

OFAT optimization can become inefficient and sometimes misleading

Prediction Equations

 More useful and efficient is one equation that predicts the output as a function of all factors

$$\hat{Y} = f(tem p, press)$$
$$\hat{Y} = f(A, B, C...)$$

- This type of equation has multiple factors. It will contain:
 - Main effects
 - Interactions

General Form of DOE Prediction Equations

 The general full equation has all combinations and power terms

 $\hat{Y} = b_0 + b_1 Flow + b_2 Temp + b_3 Flow * Flow + b_4 Flow^2 + \dots$

 Most DOE experiments will use the linear solution of the general equation to define the response

 $\hat{Y} = b_0 + b_1 A + b_2 B + b_3 C + b_4 A B + b_5 A C + \dots + b_7 A B C$

DOE equations will deal with a linear subset of the general equation

Capturing Interactions

Statistically based designs provide information about factors and interactions

- 2k-n Fractional Factorial Designs
- 2k Full Factorial
- Full Factorial (replication)
- RSM (response surface method)

Revealing information about main effects and interactions is key to process understanding

Prepared to Explore DOE

iii D	oE 3 Facto	or 2 Level **						
Ŧ	C1	C2	C3	C4	C5	C6	C7	C8
	StdOrder	RunOrder	CenterPt	Blocks	A	В	С	
1	6	1	1	1	1	-1	1	
2	3	2	1	1	-1	1	-1	
3	2	3	1	1	1	-1	-1	
4	1	4	1	1	-1	-1	-1	
5	8	5	1	1	1	1	1	
6	7	6	1	1	-1	1	1	
7	4	7	1	1	1	1	-1	
8	5	8	1	1	-1	-1	1	
9								
•								

Minitab will be the tool for creating and analyzing DOE experiments in the Breakthrough Strategy ™

Key Learning Points

Objectives Review

By the end of this module, the participant should:

- Understand the strategy behind Design of Experiments (DOE)
- Create a design matrix
- Code factors
- Understand the limitations of OFAT experiments
- Interpret interactions

Anexas Consultancy Services

Full Factorial Design of Experiments

Module Objectives

By the end of this module, the participant will:

- Generate a full factorial design
- Look for factor interactions
- Develop coded orthogonal designs
- Write process prediction equations (models)
- Set factors for process optimization
- Create and analyze designs in Minitab[™]
- Evaluate residuals
- Develop process models from Minitab[™] analysis
- Determine sample size

Why Learn About Full Factorial DOE?

- A Full Factorial Design of Experiment will
- Provide the most response information about
 - Factor main effects
 - Factor interactions
- Provide the process model's coefficients for
 - All factors
 - All interactions
- When validated, allow process to be optimized

What is a Full Factorial DOE

- A full factorial DOE is a planned set of tests on the response variable(s) (KPOVs) with one or more inputs (factors) (PIVs) with all combinations of levels
- ANOVA analysis will show which factors are significant
- Regression analysis will provide the coefficients for the prediction equations
 - Mean
 - Standard deviation
- Residual analysis will show the fit of the model

DOE Terminology

- Response (Y, KPOV): the process output linked to the customer CTQ
- Factor (X, PIV): uncontrolled or controlled variable whose influence is being studied
- Level: setting of a factor (+, -, 1, -1, hi, lo, alpha, numeric)
- Treatment Combination (run): setting of all factors to obtain a response
- Replicate: number of times a treatment combination is run (usually randomized)
- **Repeat**: non-randomized replicate
- Inference Space: operating range of factors under study

Full Factorial DOE Objectives

- Learning the most from as few runs as possible..
- Identifying which factors affect mean, variation, both or have no effect
- Modeling the process with prediction equations,

$$\hat{Y} = f(A, B, C...)$$
$$\hat{s} = f(A, B, C...)$$

- Optimizing the factor levels for desired response
- Validating the results through confirmation

Anexas Consultancy Services

Linear Combinations of Factors for Two Levels

Combinations of Factors and Levels

- A process whose output Y is suspected of being influenced by three inputs A, B and C. The SOP ranges on the inputs are
 - A 15 through 25, by 1
 - B 200 through 300, by 2
 - C 1 or 2
- A DOE is planned to test all combinations

Is testing all combinations possible, reasonable and practical?

Combinations of Factors and Levels cont'd

- Setting up a matrix for the factors at all possible process setting levels will produce a really large number of tests.
- The possible levels for each factor are

$$C = 2$$

How many combinations are there?

Α	в	С
15	200	1
16	200	1
17	200	1
18	200	1
19	200	1
20	200	1
21	200	1
22	200	1
23	200	1
24	200	1
25	200	1
15	202	1
16	202	1
17	202	1
-	-	-
-	-	-
-	-	-
-	-	
22	300	2
23	300	2
24	300	2
25	300	2

We must make assumptions about the response in order to manage the experiment

Linear Response for Factors at Two Levels

- The team decides, from process knowledge, that the response is close to being linear throughout the range of factor level settings (inference space).
- A reasonable assumption for most processes
- The levels of the factors for the test would then be
 - A 15 and 25
 - B 200 and 300
 - C 1 and 2

The design becomes much more manageable!

The Three Factor Design at Two Levels

 The revised experiment consists of all possible combinations of A, B and C each at the chosen low and high settings:

A	В	С
15	200	1
15	200	2
15	300	1
15	300	2
25	200	1
25	200	2
25	300	1
25	300	2

This is a 2³ full factorial design (pronounced two to the three). It consists of all combinations of the three factors each at two levels

Naming Conventions

The naming convention for full factorial designs has the level raised to the power of the factor:

(factor)

- and is called "a (level) to the (factor) design"
- What would a two level, four factor design be called?
- How many combinations (runs) are in a 23 design?

Class Exercise

 Write the total number of combinations for the following designs

2³

24

 Assume factors are named A, B, C, D, etc. and the levels are low "-" and high "+".

Did we all generate the same designs?

Anexas Consultancy Services

The Yates Standard Order

A method to generate experimental designs in a consistent and logical fashion was developed by Frank Yates. Anexas Europe – Lean and Six Sigma Training and Certification

The Yates Standard Order Step 1

Create a matrix with factors along the top, runs down the left side (2³ example shown)

	Factors		
Runs	Α	B	С
1			
2			
3			
4			
5			
6			
7			
8			

For a 2³ there will be 8 runs

The Yates Standard Order Step 2

Starting with the first factor, insert its low value in the first row followed by its high value in the second row. Repeat through the last row.

-	Factors			
Runs	Α	В	С	
1	15			
2	25			
3	15			
4	25			
5	15			
6	25			
7	15			
8	25			

The Yates Standard Order Step 3

Move to the next factor and place its low value in the first two rows, followed by its high value in the next two rows. Repeat through the last row.

	Factors			
Runs	Α	В	С	
1	15	200		
2	25	200		
3	15	300		
4	25	300		
5	15	200		
6	25	200		
7	15	300		
8	25	300		

The Yates Standard Order Step 4

Move to the next factor and place its low value in the first four rows, followed by its high value in the next four rows. Repeat through the last row.

-	Factors			
Runs	Α	В	С	
1	15	200	1	
2	25	200	1	
3	15	300	1	
4	25	300	1	
5	15	200	2	
6	25	200	2	
7	15	300	2	
8	25	300	2	

Anexas Europe – Lean and Six Sigma Training and Certification

The Yates Standard Order Step N

Continue the pattern until all factors are included

Yates Design GeneratorFactorRowPattern1st1 low1 high2nd2 low2 high3rd4 low4 high•nth2n-1 low2n-1 low2n-1 high

The Yates Standard Order Summary

- The Yates design generator yields all possible combinations of factor levels.
- This is a full factorial two level design for three factors.

	Factors		
Runs	Α	В	С
1	15	200	1
2	25	200	1
3	15	300	1
4	25	300	1
5	15	200	2
6	25	200	2
7	15	300	2
8	25	300	2

Class Exercise

- Write the total number of combinations for the following designs using the Yates Standard order design generator.
- **2**³
- **2**⁴
- Assume factors are named A, B, C, D, etc. and the levels are low = "-" and high = "+".

Did we all generate the same designs?

Anexas Consultancy Services

Creating a Full Factorial Design in Minitab[®]

Tool Bar Menu > Stat > DOE > Factorial > Create Factorial Design

 2^3 design

- Create a Minitab® design for
 - A pressure
 - B temperature
 - C material vendor

Stat Graph Editor Window Help **Basic Statistics** +C 🖬 🗟 🛈 ව ↑↓₩₩₩₩₩ Regression ANOVA Create Factorial Design... DOE Factorial ы Define Custom Factorial Design... Control Charts Response Surface 🕨 Quality Tools Mixture Analyze Factorial Design... Reliability/Survival Taguchi Multivariate Modify Design ... **Time Series** Contour/Surface (Wireframe) Plots.. Display Design... Tables Overlaid Contour Plot ... Nonparametrics Response Optimizer.. EDA Power and Sample Size

Create Factorial Design		×
Type of Design		
• 2-level factorial (default generators)	(2 to 15 factors)	
© 2-level factorial (specify generators)	(2 to 15 factors)	
O Plackett- <u>B</u> urman design	(2 to 47 factors)	
© <u>G</u> eneral full factorial design	(2 to 9 factors)	
Number of factors: 3	Display Available	e Designs
	Designs	Eactors
ĺ	Options	<u>R</u> esults
Help	<u>o</u> ĸ	Cancel

Design parameters are entered; ready to create the design in the worksheet.

www.anexas.net

Worksheet 1 ***

	C1	3	63	C4	C5	6	C7	60
. * .		<u> </u>	6		- CJ	0	<u> </u>	0
	StdOrder	RunOrder	CenterPt	Blocks	Pressure	Temperature	Matl Vendor	
1	1	1	1	1	15	200	1	
2	2	2	1	1	25	200	1	
3	3	3	1	1	15	300	1	
4	4	4	1	1	25	300	1	
5	5	5	1	1	15	200	2	
6	6	6	1	1	25	200	2	
7	7	7	1	1	15	300	2	
8	8	8	1	1	25	300	2	
9				3		5		

This is the Yates Standard order for a 2³ uncoded design

Std Order Column of Minitab Design

We	Worksheet 1 ***							
Ŧ	C1	C2	C3	C4	C5	C6	C7	C8
	StdOrder	RunOrder	CenterPt	Blocks	Pressure	Temperature	Mati Vendor	
1	1	1	1	1	15	200	1	
2	2	2	1	1	25	200	1	
3	3	The S	tdOrde	er 1	15	300	1	
4	4	Colur	nn is th	l e 1	25	300	1	
5	5	Yates	Standa	rd ¹	15	200	2	
6	6	Orde	r	1	25	200	2	
7	7	order		1	15	300	2	
8	8	8	1	1	25	300	2	
9								

Run Order Column of Minitab Design

W	Worksheet 1 ***							
Ŧ	C1	C2	C3	C4	C5	C6	C7	C8
	StdOrder	RunOrder	CenterPt	Blocks	Pressure	Temperature	Matl Vendor	
1	1	1		4	15	200	1	
2	2	2	Run	Irder	25	200	1	
3	3	3	Colur	nn is	15	300	1	
4	4	4	the		25	300	1	
5	5	5	seque	nce	15	200	2	
6	6	6	of the	runs	25	200	2	
7	7	7		/ 1 0115	15	300	2	
8	8	8			25	300	2	
9						S		

StdOrder is created by the design choice RunOrder is created by randomize runs choice

www.anexas.net

Class Exercise Part 1

- Generate the previous design with the randomize runs tic box selected
- Compare results with your neighbors

Class Exercise Part 2

Create a non random Minitab design for the following: The factors are

	NAME	LE	VEL
		(Low	High)
А	Customer Type	Retail	Consumer
В	System	Legacy	SAP
С	Warehouse	Atlanta	Dallas
D	Overtime Hours	0	100

The response is on-time delivery.

Be prepared to present your results.

Anexas Consultancy Services

Replicates and Repeats

What are Replicates and Repeats?

- Replicate
- Total run of all treatment combinations
 - Usually in random order
- Requires factor level change between runs
- All experiments will have one replicate
 - Two replicates are two complete experiment runs
- Statistically best experimental scenario Repeat (also repetition)
- Additional run without factor level change

Minitab Design Replication

- Minitab easily handles replicating the design
- Replicate or repeat is treated same in design
- Actual factor level change between runs is at the discretion of the experimenter
 - Minitab provides treatment combination
 - Randomization or information needed is part of strategy of experiment

Tool Bar Menu > Stat > DOE > Factorial > Create Factorial Design

Create a 2² with two non randomized replicates

Create Factorial Design	X
Type of Design	
2-level factorial (default generators)	(2 to 15 factors)
© 2-level factorial (specify generators)	(2 to 15 factors)
O Plackett- <u>B</u> urman design	(2 to 47 factors)
C General full factorial design	(2 to 9 factors)
Number of factors: 2	Display Available Designs
	Designs Eactors
	O <u>p</u> tions <u>R</u> esults
Help	<u>O</u> K Cancel

Create Factorial Design -	Designs		×
<u>D</u> esigns	Runs	Resolution	2**(k-p)
Full factorial	4	Full	2**2
Number of center poi	ints: 0	(per b	lock)
Number of <u>r</u> eplicates	: .	(for co	orner points only)
Number of <u>b</u> locks:	1	3	
Help		<u><u>O</u>K</u>	Cancel

Skip the other dialog options

Worksheet 1 ***								
Ŧ	C1	C2	C3	C4	C5	C6	C7	
	StdOrder	RunOrder	CenterPt	Blocks	A	В		
1	1	1	1	1	-1	-1		
2	2	2	1	1	1	-1	First	٦
3	3	3	1	1	-1	1	Replicate	
4	4	4	1	1	1	1		
5	5	5	1	1	-1	-1		
6	6	6	1	1	1	-1	Second	
7	7	7	1	1	-1	1	Replicate	
8	8	8	1	1	1	1		
9								

Response Y would be placed in C7

Randomized Replication in Minitab for Step 4

Worksheet 2 ***									
Ŧ	C1	C2	ជ	C4	CS	C6	C7	Γ	
	StdOrder	RunOrder	CenterPt	Blocks	Α	В			
1	7	1	1	1	-1	1			
2	4	2	1	1	1	1		Γ	
3	5	3	1	1	-1	-1	8	Ī	
4	3	4	1	1	-1	1		Γ	
5	8	5	1	1	1	1			
6	2	6	1	1	1	-1			
7	1	7	1	1	-1	-1		Γ	
8	6	8	1	1	1	-1	·	Ī	
9								t	

Response Y would be placed in C7

Anexas Consultancy Services

Coding the Design

Coding the design by transforming the low factor level to a "-1" and the high factor level to a "+1" offers analysis advantages

Coding Review Exercise

Fill in the coded design based upon the uncoded design

	Und	Uncoded Factors			Coded Factors		
Runs	Α	В	С	A	В	С	
1	15	200	1				
2	25	200	1				
3	15	300	1				
4	25	300	1				
5	15	200	2				
6	25	200	2				
7	15	300	2				
8	25	300	2				

Any uncoded design can be transformed into a coded design

Requirement of Factor Independence

- Factors are mathematically independent when only the response is a function of the factors
- A factor is not a function of another factor
- The coded design is orthogonal
 - Factors will be independent

DOE analysis requires that the factors be independent

Anexas Consultancy Services

Orthogonal Designs
Determining Orthogonality

Consider the 2² design

2		Coded	OutPut	
-	Runs	X ₁	X ₂	Y
	1	-1	-1	(y ₁)
	2	1	-1	(y ₂)
	3	-1	1	(y ₃)
	4	1	1	(y ₄)

The run outputs, Y_n, can be described by

where b and c are coded settings of the factors

It can be shown that for X_1 to be independent of X_2

Calculating Orthogonality

	Coded	Coef1*coeff2	
Runs	X1	X2	X1*X2
1	-1	-1	1
2	1	-1	-1
3	-1	1	-1
4	1	1	1
		Σ	0

Satisfies

$$\sum_{i=1}^{n} b_i c_i = 0$$

Therefore orthogonal and independent

Coding and Orthogonality for a 2² Design

Orthogonal designs can be represented as a geometric (mathematical) figure

anexas consultency se

www.anexas.net

Coding and Orthogonality for a 2³ Design

The vertices are the response measurement points; the volume within is the inference space

Response and Orthogonality

The response can be measured at each corner of the design, as represented by Y(A,B).

Coding and the Linear Model

Fitting a linear model to the coded design becomes very easy

Anexas Consultancy Services

Main Effects and Interactions

Calculating Main Effects

A DOE is run:

	Coded Factors		Response	
	Α	В	Y	
	-1	-1	48	
96 ± 36	1	-1	96	
$\frac{30+30}{2} = 66$	-1	1	72	
	1	1	36	
Y _{ave} at FACTOR _{high}	66	54		
Yave at FACTORIow	60	72		What does a non-
Effect	6	-18		zero effect mean?

effect = Y(@ factorhigh) - Y(@ factorlow)

The factor (or main) effects are easily calculated

www.anexas.net

Discovering Interactions

A response change due to both A and B changing is called an interaction

www.anexas.net

Linear Prediction Equation With Interaction Term

 The interaction will add a term to the linear equation

Y = b0 + b1 A + b2 B + b3 AB

- A and B are the main effects
- AB is the interaction
- b0 is the grand mean (intercept)
- b1, b2, and b3 are the term coefficients

Coded Values for Interactions

The coded value matrix for an interaction is the product of the factor coded values:

Finding the interaction levels in a coded design is as simple as multiplying one times one

Calculating Interaction Effects

The DOE again

	Coded Factors		Interaction	Response
This is the Yates	Α	В	AB	Y
Standard Order for a	-1	-1	1	48
2^2 coded design with	1	-1	-1	96
interaction	-1	1	-1	72
	1	1	1	36
Yave at FACTORhigh	66	54	42	
Yave at FACTORIow	60	72	84	
Effect	6	-18	-42	

The interaction is set by the design (math) based upon the factor settings

Anexas Consultancy Services

Main Effects, Interactions and Cube Plots in Minitab

Create the Experiment

Tool Bar Menu > Stat > DOE > Factorial > Factorial Plots Create a 2² coded design for factors A and B.

ŧ	C1	C2	C3	C4	C5	C6	G (
	StdOrder	RunOrder	CenterPt	Blocks	A	В	Y	Input the Y
1	1	1	1	1	-1	-1	48	response
2	2	2	1	1	1	-1	96	
3	3	3	1	1	-1	1	72	
4	4	4	1	1	1	1	36	-
5								-

914

Factorial Plots in Minitab Step 1

Main Effects Plot

The response is plotted by factor from low level to high level

Interaction Plot

Parallel lines indicate no interaction; the less parallel, the higher the degree of interaction

Cube Plot

The response is plotted on the orthogonal factor axis

Using the file *TWO CUBE EXERCISE.MTW* create all three factorial plots.

Be prepared to discuss your results.

Anexas Consultancy Services

The Prediction Equations

Developing the Prediction Equation

Knowing the design, responses and effect analysis the prediction equation can be found.

	Coded Factors		Interaction	Response
	Α	В	AB	Y
	-1	-1	1	48
	1	-1	-1	96
	-1	1	-1	72
	1	1	1	36
Y _{ave} at FACTOR _{high}	66	54	42	
Y _{ave} at FACTOR _{low}	60	72	84	
Effect	6	-18	-42	

$$\hat{Y} = b_0 + b_1 A + b_2 B + b_3 A B$$

www.anexas.net

The Intercept – Constant – Grand Mean Relationship

Y = b0 + b1 A + b2 B + b3 AB

If we set all (coded) factors to equal zero, the equation becomes: Y = b0

which is the overall average, or grand mean. The grand mean of the response is 63.

The regression constant is the grand mean of the responses for a coded design

Finding the Coefficients

Looking at $b_1 A$ in coded units

when A = 1, $Y_{ave} = 66$ when A = -1, $Y_{ave} = 60$

The rise from -1 to +1 is 6 The run is 2 The slope is 6/2 = 3

The regression coefficients are the factor effects divided by two for a coded design

Finishing the Matrix

	Coded Factors		Interaction		Response
	Α	В	AB		Y
	-1	-1	1		48
	1	-1	-1		96
	-1	1	-1		72
	1	1	1		36
Yave at FACTORhigh	66	54	42	Grand Mean	63
Y _{ave} at FACTOR _{low}	60	72	84		
Effect	6	-18	-42		
Coefficient	3	-9	-21		

$$Y = 63 + 3A - 9B - 21 AB$$

Verify the equation for the coded A and B values in the matrix

Anexas Consultancy Services

DOE Analysis in Minitab[™]

Create the Experiment

Create or recall the 2² coded design for factors A and B.

١	¥orksheet 4							
Ŧ	C1	C2	C3	C4	C5	C6	C7 (
	StdOrder	RunOrder	CenterPt	Blocks	A	В	Y	Input the Y
1	1	1	1	1	-1	-1	48	response
2	2	2	1	1	1	-1	96	
3	3	3	1	1	-1	1	72	
4	4	4	1	1	1	1	36	_
5								_

Setting Up the Analysis

Tool Bar Menu > Stat > DOE > Factorial > Analyze Factorial Design

Selecting Terms

The Analysis

Fractional Factorial Fit: Y versus A, B

Estimated Effects and Coefficients for Y (coded units)

Term	Effect	Coef
Constant		63.00
A	6.00	3.00
в	-18.00	-9.00
A*B	-42.00	-21.00

Analysis of Variance for Y (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Main Effects	2	360.0	360.0	180.0	*	*
2-Way Interactions	1	1764.0	1764.0	1764.0	*	*
Residual Error	0	0.0	0.0	0.0		
Total	3	2124.0				

The coefficients are identical to manual analysis

Another Analysis

Tool Bar Menu > Stat > DOE > Factorial > Analyze Factorial Design

930

Recalling the *TWO CUBE EXERCISE.MTW* file

Setting Up the Analysis

What can be estimated with this model? How many terms in the prediction equation?

Selecting Graph Options

Analyze Factorial Design - Graphs	×	
C1 StdOrder C2 RunOrder C3 Blocks C4 CenterPt C5 Temperature C6 Pressure C7 Matl Vendor C8 Yield	Effects Plots ▶ormal	From the Graphs menu select the graph shown
Select		
Help	<u>O</u> K Cancel	

The ANOVA Results

Results for: TWO CUBE EXERCISE.MTW

Estimated Effects and Coeff	icients for	Yield (cod	ed units)			
Term	Effect	Coef	SE Coef	Т	P	
Constant		0.66432	0.01356	49.01	0.000	
Temperat	-0.12226	-0.06113	0.01356	-4.51	0.000	\leq
Pressure	-0.05303	-0.02651	0.01356	-1.96	0.059	\langle
Matl Ven	-0.00000	-0.00000	0.01356	-0.00	1.000	
Temperat*Pressure	0.03682	0.01841	0.01356	1.36	0.184	
Temperat*Matl Ven	0.01326	0.00663	0.01356	0.49	0.628	
Pressure*Matl Ven	-0.02062	-0.01031	0.01356	-0.76	0.452	
Temperat*Pressure*Matl Ven	0.02504	0.01252	0.01356	0.92	0.363	
Analysis of Variance for Yi	eld (coded	units)				
Source DF	Seq SS	Adj SS	Adj MS	F	Р	
Main Effects 3	0.177592	0.177592	0.059197	8.05	0.000	
2-Way Interactions 3	0.019571	0.019571	0.006524	0.89	0.458	
3-Way Interactions 1	0.006271	0.006271	0.006271	0.85	0.363	
Residual Error 32	0.235199	0.235199	0.007350			
Pure Error 32	0.235199	0.235199	0.007350			
Total 39	0.438632					

Fractional Factorial Fit: Yield versus Temperature, Pressure, ...

The ANOVA Table shows temperature and pressure are significant; regression coefficients are listed

The Pareto of Standardized Effects

The Pareto of effects shows the ranking of the variation identified by each source; note the "line of significance"

anexas consultency se

www.anexas.net

The Prediction Equation from Minitab[™]

Term	Effect	Coef
Constant		0.66432
Temperat	-0.12226	-0.06113
Pressure	-0.05303	-0.02651
Matl Ven	-0.00000	-0.00000
Temperat*Pressure	0.03682	0.01841
Temperat*Matl Ven	0.01326	0.00663
Pressure*Matl Ven	-0.02062	-0.01031
Temperat*Pressure*Matl Ven	0.02504	0.01252

 The ANOVA table coefficients column feeds the prediction equation

Y = b0 + b1 A + b2 B + b3 C + b4 AB + b5 AC + b6 BC + b7 ABC

 The ANOVA table p-value column identifies the significant effects, or terms of the regression; to simplify the prediction equation the number of terms must be reduced

Removing Model Terms in Minitab[™]

Tool Bar Menu > Stat > DOE > Factorial > Analyze Factorial Design > Terms

Removing Terms Stepwise

- When reducing the regression model do not remove all insignificant terms at once
- Removed terms variance go into error, along with their degrees of freedom
- Significance levels can change as terms are removed.
- Start with higher order terms and remove no more than two at a time.
- Run analysis and check for changes in significance

Re-run Reduced Model in Minitab[™]

Fractional Factorial Fit: Yield versus Temperature, Pressure

Y = 0.664 - 0.061A - 0.026 B

Where do you set the factors to optimize this process?

Class 2³ DOE Exercise Part 1

- Your company has a global operation. Times are tough and a restructuring of your world wide product centers is needed. Your team is required to develop the restructuring model based upon three core global business metrics: exchange rate, customs hold time and cross border banking fees. The goal is to find the combination of these criteria that minimizes the variance to the operating plan for the business.
- Exchange rate is felt to be unimportant due to currency stability in the countries you deal in. Cross border fees are a matter of local control and can be greatly reduced by moving cost centers into the countries, thus keeping money transfers to a minimum. The team agrees that the real problem is custom hold time which can be expedited by additional cost, but will reduce the supply side pressure.
- What do you recommend to the CEO about the importance of exchange rates, cross border fees and custom hold times as she makes her decision - in the next 20 minutes?

Class 2³ DOE Exercise Part 2

- Using the file TWO CUBED CLASS.XLS
- Create the design in Minitab
- Import the data from Excel[™]
- Analyze the factorial plots
- Analyze the ANOVA
- Select significant terms
- Reduce the model
- Determine the final prediction equation
- Optimize the process by selecting factor levels
- Be prepared to present your results

The General Linear Model

Why GLM?

- The General Linear Model
- Allows more flexible design
- Allows multiple levels
- Does not require factors to have same number of levels
- Is well suited for business process problems

Setting up a GLM Design

- Account receivables lockup, where payments are withheld, is thought to be caused by four factors
- SPAs (Special Pricing Agreements) -4 categories
- Market sector 3 demographics
- Sales region 6 regional centers
- Performance to contract 3 levels
- Design a DOE to study the problem

Setting up GLM

Tool Bar Menu > Stat > DOE > Factorial > Create Factorial Design

Factor Name and Number of Level Assignments

reate Factorial De	esign - Designs		×
Factor	Name	Number of Level	ls
A	A		
В	В		
С	С		
D	D		Create Factorial Design - Designs
Number of <u>r</u> epl	icates: 1 🔽	<u>O</u> K Cancel	Factor Name Number of Levels A SPA 4 B Market Sector 3 C Sales Region 6 D Performance 3 Number of replicates: 1 Elock on replicates 1
			Help <u>O</u> K Cancel

Factor Level Assignments

consultancy

Options

Create Factorial Designs - Options		×
🗖 Rardomize r <u>u</u> ns		
Base for random data generator		
☑ <u>S</u> tore design in worksheet		
Нер	<u>0</u> K	Cancel

GLM Generated Worksheet

C1	C2	C3	C4	C5-T	C6-T	C7-T	C8	
StdOrder	RunOrder	Blocks	SPA	Market Sector	Sales Region	Performance	AR Held	
1	1	1	1	С	N	Н		
2	2	1	1	С	N	М		
3	3	1	1	С	N	L		
4	4	1	1	С	S	Н		
5	5	1	1	С	S	M		
6	6	1	1	С	S	L		
7	7	1	1	С	E	Н		
8	8	1	1	С	E	M		
9	9	1	1	С	E	L		
10	10	1	1	С	W	Н		
11	11	1	1	С	W	M		
12	12	1	1	С	W	L		
13	13	1	1	С	Eu	Н		
14	14	1	1	С	Eu	M		
15	15	1	1	С	Eu	L		
16	16	1	1	С	AP	Н		
17	17	1	1	С	AP	M		
18	18	1	1	С	AP	L		
19	19	1	1	1	N	Н		
20	20	1	1	1	N	М		
21	21	1	1	1	N	L		
22	22	1	1	1	S	Н		

C1	C2	C3	C4	C5-T	C6-T	C7-T	C8
StdOrder	RunOrder	Blocks	SPA	Market Sector	Sales Region	Performance	AR Held
196	196	1	4	1	AP	Н	
197	197	1	4	L	AP	M	
198	198	1	4	l,	AP	L	
199	199	1	4	М	N	Н	
200	200	1	4	M	N	М	
201	201	1	4	M	N	L	
202	202	1	4	M	S	Н	
203	203	1	4	М	S	M	
204	204	1	4	M	S	L	
205	205	1	4	M	E	Н	
206	206	1	4	M	E	M	
207	207	1	4	М	E	L	
208	208	1	4	M	W	Н	
209	209	1	4	M	W	М	
210	210	1	4	М	W	L	
211	211	1	4	M	Eu	Н	
212	212	1	4	M	Eu	М	
213	213	1	4	M	Eu	L	
214	214	1	4	М	AP	Н	
215	215	1	4	М	AP	М	
216	216	1	4	М	AP	L	

This is a BIG test – but Minitab easily handles it.

www.anexas.net

Objectives Review

By the end of this module, the participant should:

- Generate a full factorial design
- Look for factor interactions
- Develop coded orthogonal designs
- Write process prediction equations (models)
- Set factors for process optimization
- Create and analyze designs in Minitab[™]
- Evaluate residuals
- Develop process models from Minitab[™] analysis
- Determine sample size

Implementing Solutions

You Are Here

Elements of a Plan

а

Capturing FMEA Information

(origina (revise			ıte	Dat	FMEA Analysis							Project:		
Detection	Occurrence	Severity	"After" — → Action Taken	Responsibility and Target Date	Recommended Action	RPN	Detection	Current Controls	Occurrence	Potential Cause(s)	Severity	Potential Effect (s) of Failure	Potential Failure Mode	Item or Process Step
		\vdash	-											
		F												
		╞												
	+	╞												
		F												
		F												
	╇	┢												
	\square	╞												
		F												
		┢												
	+	\vdash												
· =	nber	lum	Risk Priority N	"After"			r =	rity Numbe	Prior	Total Risk I		'		

954

Piloting

Benefits of Piloting

- Improved solution
- Improved implementation plan
- Increased buy-in
- Get some of the benefits of the improvement quickly
- Reduced risk of failure or unknown complications
- Ability to confirm assumed cause-and-effect relationships
- Increased ability to quantify costs and benefits
- Overall benefit is a better solution with fewer surprises

Implementing the Plans

Implementation Steps

- Flowchart new procedures if you have not already
- Revise job instructions
- Prepare data collection forms
- Provide training
- Test on a small scale first, if at all possible:
 - Revise procedures based on the test
- Do full-scale implementation
- Monitor the implementation

Implementing Solutions: Review

- Prepare detailed plans that include:
 - Tasks and timelines
 - Budgets and resources
 - Stakeholder involvement
 - Plans for checking
 - Failure prevention
 - Implement on small scale first, then move to full scale

Evaluating Results

You Are Here

Quantifying Results

Displaying Before and After Data

- Add more data to an existing run chart or control chart
- Prepare new Pareto charts for those you created in MEASURE:
 - Make scale and dimensions the same so you can more accurately judge degree of improvement
- Draw new frequency plots on the same scale as the original plots

Recalculate Process Sigma

Step	Units	Opportunities	BEFORE	AFTER	BEFORE
1	40	$2 \times 40 = 80$	61	17	
2	40	1 x 40 = 40	37	1	Yield = $1 - \frac{340}{960}$
3	40	3 x 40 = 120	113	12	= 1 – .88
4	40	1 x 40 = 40	34	0	
5	40	4 x 40 = 160	142	8	= 12%
6	40	1 x 40 = 40	38	0] Sigma = 0.3
7	40	2 x 40 = 80	69	3	
8	40	4 x 40 = 160	143	37	AFTER
9	40	1 x 40 = 40	37	0	Yield = $1 - \frac{86}{3}$
10	40	2 x 40 = 80	64	5	960
11	40	2 x 40 = 80	72	2	= 109
12	40	1 x 40 = 40	35	1	= 91%
		960	846	86	
					Sigma = 2.8

Financial Results

- Estimate the financial benefits of the project:
 - Cost/benefit ratio
 - Payback cycle time
- Order-of-magnitude estimates usually enough:
 - Benefits of scrap or rework reduction are straightforward
 - Benefits of cycle time reduction, etc. are more difficult to quantify
- Consult with the Financial Controller to validate the estimate

IMPROVE: Implement Solutions and Evaluate Results

Review

You Were Here—IMPROVE

www.anexas.net

IMPROVE Phase Deliverables

- List of potential improvements
- Optimum solutions identified and selected
- Proof of impact of solutions
- Failure mode effects analysis (FMEA)
- Cost benefit analysis
- Before versus after analysis
- Revised process map
- Implementation plan

IMPROVE Phase Deliverables, cont.

- Revised stakeholder matrix and communication plan
- IMPROVE section of storyboard completed
- IMPROVE phase discussed and agreed with sponsor and coach
- IMPROVE deliverables completed and phase approved

IMPROVE Checklist

- By the end of the IMPROVE phase, you should be able to answer the following questions. Please check!:
 - What solutions have you identified? How do they affect the root causes?
 - What criteria have you used to select a solution?
 - This includes criteria such as how the solution was linked to the verified root cause(s) identified in the ANALYZE phase
 - How do the various alternatives score against those criteria?
 - What are the results of designed experiments (if applicable) to find optimal settings?
 - How have you tested the solutions, and what were the results of these tests?
 - How do timing and results compare to plans and expected results?

IMPROVE Checklist, cont.

- By the end of the IMPROVE phase, you should be able to answer the following questions. Please check!, cont.:
 - What is your plan for detailed implementation, including training?
 - What process/areas are to be improved? Who are the process owners? Who else is affected?
 - What is the data showing about the solution's effectiveness?
 - What is the actual benefit? Was it calculated and approved by finance?
 - Is additional work required to refine the solution, such as collecting additional data, revisiting an earlier step, etc.?
 - Why are you confident that the current solution should be standardized?

You Are Here—CONTROL

www.anexas.net
CONTROL: Standardize and Make Future Plans

Goal:

- Maintain the gains by standardizing work methods or processes
- Anticipate future improvements and preserve the lessons from this effort
- Output:
- Documentation of the new method
- Training in the new method
- A system for monitoring its consistent use and for checking the results
- Completed documentation and communication of results, learnings, and recommendations

Approach to CONTROL

Anexas Consultancy Services

Standardization: Methods and Training

You Are Here

What Is Standardized Work?

- Standardized work is the most efficient and effective combination of people, material, and equipment that is presently possible:
 - Sets the baseline, which allows:
 - Measurement of performance
 - Identification of improvements
 - Assessment of changes

Anexas Consultancy Services

Training

Training

- When you have completed the documentation, you need to make sure that everyone using the process is trained in the new methods
- Even experienced employees need to be trained in the new methods

Anexas Consultancy Services

Process Monitoring and Control

You Are Here

Goals

- Understand what is meant by the term process management
- Create a process management chart using the process management chart format
- Understand what is meant by the term visual controls
- Match the following charts with situations in which each is most appropriate: Xbar, R-chart, pchart, npchart, cchart, and uchart
- Apply control charts to the monitoring plan for your project

Anexas Consultancy Services

Methods for Monitoring and Control

ane

consulte

Process Management Chart Definition

 Process management charts are tools that help you document PDCA for your process

	PLAN/DO	CHECK	ACT
	Process Map	Indicators	Corrective Actions
		Plot time on each order; should be ≤ 2 hours; check for special causes	If time exceeds 2 hours, alert Sam immediately; organize investigation
		Count errors	If more than 1 per order, stop process, contact Sam
Xas		www.anexas.net	R 01

984

Process Management Chart Features

Visual Controls: Communication Board

Visual Controls

Anexas Consultancy Services

Ongoing Data Collection and Process Control

Ongoing Data Collection

- Monitor your process through ongoing data collection
- Use control charts to plot the data and identify signals of special causes
- Use special cause and common cause thinking to reduce variation

Anexas Consultancy Services

Control Charts

Statistics of a Control Chart

Responding to Control Charts

- Appropriate managerial actions are quite different for common causes than for special causes
- Control charts help us determine if we have special or common causes, which guides us in selecting what type of action to take and when:
 - The choice is an important one as inappropriate actions often make things worse; at the very least, they waste time, resources, and money

Consequences of Actions Taken in Response to **Control Charts**

Control Chart Roadmap

Control Chart Roadmap

Constructing Control Charts for Discrete Data

Chart	Control Limit Calculations
p -chart	$\overline{p} \pm 3\sqrt{\frac{\overline{p}(1 \ \overline{p})}{n}}$
np-chart	$n\overline{p} \pm 3\sqrt{n\overline{p}(1 \ \overline{p})}$
c-chart	$\overline{c} \pm 3\sqrt{\overline{c}}$
u-chart	$\overline{u} \pm 3\sqrt{\frac{\overline{u}}{a}}$

- More information on how to calculate the limits by hand is beyond the scope of Green Belt Training
- We will use Minitab to construct the charts and obtain the control limits

Summary of Assumptions for Control Charts, cont.

Binomial distribution:

- The term "binomial" derives from the fact that any given item either will or will not have the attribute being studied—so there are only two possible outcomes for each item (yes, it has the attribute, or no it does not): Yes/No an item is defective or Yes/No a sale was lost:
 - The binomial distribution describes the probability that a given number of items from the population will possess a given attribute (such as a defect) when the overall proportion of the population with the attribute is described by p:
 - A binomial distribution may or may not be symmetrical
 - To use a binomial distribution, you need to be able to count both occurrences (Yes) and non occurrences (No)
 - When the binomial assumption holds, the p chart is preferred
 - If the binomial assumption does not hold, use an individuals chart on percentages

Summary of Assumptions for Control Charts, cont.

Poisson distribution:

- When you can count occurrences but not non occurrences (such as counting the number of computer outages) and the probability of occurrence is relatively rare, your data are more likely to follow a Poisson distribution
- A good rule of thumb is that an occurrence is rare if it is likely to occur less than 10% of the time
- If the probability of occurrence is high, treat the data like individual data points and create an individuals chart based on the Normal distribution assumptions:
 - When the Poisson assumption holds, the c chart is preferred
 - If the Poisson assumption does not hold, use an individuals chart of counts

Anexas Consultancy Services

Communication and Future Plans

You Are Here

 Identify ways to bring a project to closure in your own organization

Importance of Closure

- Recognize the considerable time and effort that went into the initiative
- Capture the learnings from the initiative:
 - About the problem or process being studied
 - About the improvement process itself
- Hand over responsibilities for standardization and monitoring to the appropriate people

Project Closure

- Improvement must be continuous, but individual initiatives and project teams come to an end
- Learn when it is time to say good-bye
- Effective project closure weaves together the themes of:
 - Project purpose
 - Improvement methods
 - Team skills and structures
- Develop managerial systems to capture learnings and enable the organization to address system issues
- Documentation and recognition are two critical aspects of project team closure

Exercise: Closure

Objective: Build awareness of how to successfully bring a project to a close

Instructions:

- Work in pairs or small groups to answer the following questions:
 - What would indicate that a team had ended well? What would indicate that a team had not formally closed or had not done it well? Explain
 - Think of teams that have completed their work—what methods of closure were used by these teams? How effective were they? How do you know?
- Be prepared to share your answers with the whole group

Time: 10 minutes

Closure Checklist

- 1. Avoid needless continuation
- 2. Summarize learnings:
 - About the work process
 - About the team's process
 - About your results
- 3. Finalize documentation on improvements
- 4. Summarize future plans and recommendations
- 5. Communicate the ending
- 6. Celebrate

6 steps to close a Project: Project Closure Process

1. Avoiding Needless Continuation

2. Summarizing Learnings

- About your results
- About the work process
- About the team's process

3. Finalize Documentation on Improvements

- Finish your storyboard:
 - It should contain your final results and conclusions
- Present the completed document to:
 - The sponsors
 - The people whose jobs are changing as a result of the work
 - Customers of the change
 - Other interested people
 - Collect, catalog, and make the documentation available to others

4. Summarize Future Plans and Recommendations

- Have your team discuss the following issues and compile recommendations that you submit to your sponsor or guidance team:
 - What are your recommendations for maintaining the gains already put in place? What role would you like your team to play?
 - How much improvement is still needed to achieve the business goals?
 - What portions of the problem are still left to address? Which of these are the most urgent to address?
 - What would you and your team like to work on next, if approved by management? Where do you think management should devote resources next?

5. Communicate the Ending

- Communicating the team's results is a joint task for the project team and its sponsor or guidance team:
 - If not done already, identify the people who will be involved in implementing the improved methods
 - Which employees could benefit from your lessons learned?
 - How can you communicate to management? To the rest of the organization?
 - How can the end of this project sow the seeds for future projects?

6. Celebration and Recognition

- What is the appropriate way to celebrate this closure (lunch/dinner/dessert)?
- How will you say good-bye?

6. Celebration and Recognition, cont.

- Recognition is an important aspect of celebration and should reinforce intrinsic sources of satisfaction and motivation:
 - Examples:
 - A small souvenir related to the project work
 - A pizza lunch for everyone who was involved in the initiative, including those whose jobs have changed as a result of the initiative

Exercise: Closure in Your Organization

Objective: Understand what parts of closure may be most challenging in your organization

Instructions:

- Work alone or in small groups
- Review at least one of the closure checklist items and discuss how it would work in your organization
- Be prepared to discuss your results with the whole group

Time: 10 minutes

Anexas Consultancy Services

CONTROL: Standardize and Make Future Plans

Review

You Were Here—CONTROL

www.anexas.net

CONTROL Phase Deliverables

- All standard documentation, policies and procedures, role profiles, performance management, training, etc., updated to standardize and integrate improved process
- Monitoring and controls identified to sustain improved performance
- Controls documented in control and reaction plan
- Final project report completed
- **Post closure audit plan** (if required)
- Storyboard completed
- Project discussed and sign off agreed with sponsor, coach, and process owner
- CONTROL deliverables completed, phase and project closure approved
- Project handed over to process owner

CONTROL Checklist

- By the end of CONTROL, you should be able to demonstrate to your sponsor that everyone involved in the process is consistently using new methods designed to eliminate/minimize problems identified back in MEASURE:
 - Your sponsor may be interested in seeing:
 - Documentation of the new methods, and examples of how they are used (Standard Practice Worksheet, One-Point Lesson)
 - Examples of self-audits or other checks done to monitor implementation
 - Control charts regularly updated with new data and showing that process performance is within control limits (only common cause variation is present)
 - Method of ongoing control and acceptance of ownership by process owner
 - Recommendations (supported by data, if possible) for next actions involving this process or ideas for a spin-off from this project
 - Completed project documentation (include a final storyboard that shows the results of your data analysis)
 - Plans for (or results from) communicating achievements to the organization
 - Potential replication of solutions found to other similar lines/processes
 - Plans for celebrating your success

DMAIC REVIEW

Stay Connected!

- Please subscribe Anexas Europe YouTube channel to get access to all the training material on video.
 <u>https://m.youtube.com/channel/UCAk6IJsnPCsz7-</u> rZTVx90uw
- Please join Anexas Alumni Facebook Group for updates about latest developments and career opportunities for Green Belts and Black belts

https://www.facebook.com/groups/160848720633713

 Please like our page on Facebook to stay updated about the latest videos on Quality, Process Excellence and Project management

https://www.facebook.com/denmarkanexas

Stay Connected!

- Please join Anexas Europe Linked In Page for updates about latest developments and career opportunities for Green Belts and Black belts https://www.linkedin.com/school/9379319/
- Connect with the founder of Anexas Europe Amitabh Saxena on his LinkedIn account to see his latest videos on quality topics

https://www.linkedin.com/in/amitabhsaxena/

- Please write to Anexas Team at <u>enquiry@anexas.net</u> for any queries
- Anexas website: <u>www.anexas.net</u>

- Congratulations on completing a milestone in your life!
- Best wishes for your Lean and Six Sigma journey!

- Amitabh Saxena CEO Anexas Europe

